

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 201

ISSN: 1004-9037
https://sjcjycl.cn/

DOI: 10.5281/zenodo.777645

INSTANTANEOUS SNAPSHOT-BASED MINIMUM-PROCESS ACCORDANT
RECOVERY LINE AGGLOMERATION BLUEPRINT FOR FAULT-RESILIENT

MOBILE DISTRIBUTED SYSTEMS

Ashwini Patil R K

Research Scholar, Department of Computer Science & Engineering, Sunrise University,
Alwar, Rajasthan, India, Ashwinrk1115@gmail.com

Dr. Rajeev Yadav

Professor, Department of Computer Science & Engineering, Sunrise University, Alwar,
Rajasthan, India, Ashwinrk1115@gmail.com

Abstract:
We propound a rock-bottom transaction Accordant Recovery Line agglomeration (ARL-
agglomeration) blueprint for Nomadic systems, where no inoperative snapshots (recapture-
pinpoints) are hoarded and an effort has been made to moderate the intrusion of transactions.
We propose to delay the processing of selective missives at the receiver end only during the
ARL-agglomeration period. A transaction is indorsed to carry out its normal computations and
ship missives during its intrusion period. In this way, we try to keep intrusion of transactions
to bare rock-bottom. In order to keep the intrusion time rock-bottom, we grab the causal-
interrelationships vectors and compute the accurate rock-bottom set in the beginning of the
blueprint. In orchestrated ARL-agglomeration, if a solitary transaction flops to retain its
recapture-pinpoint; all the ARL-agglomeration effort goes waste, because, each transaction has
to terminate its partially-perpetual recapture-pinpoint. In order to retain its partially-perpetual
recapture-pinpoint, a Nomadic Node needs to transfer large recapture-pinpoint data to its native
Nm_Spp_St (Nomadic Support Station) over wireless channels. The ARL-agglomeration effort
may be remarkably high due to recurrent forsakes especially in nomadic systems. We try to
curtail the loss of ARL-agglomeration effort when any transaction flops to retain its recapture-
pinpoint in coordination with others. In the first phase, we retain instantaneous recapture-
pinpoints only. In this case, if any transaction flops to retain its recapture-pinpoint in the first
phase, all concerned transactions need to terminate their instantaneous recapture-pinpoints only
and not the partially-perpetual ones.
Keywords: Culpability Immunity, Nomadic Computing Systems, orchestrated checkpointing,
Rollback Recovery, Distributed Systems.

I. INTRODUCTION
A distributed system (DS) is a coalition of self-regulating entities that collaborate to elucidate
a problem that cannot be individualistically resolved. A Nomadic system is a DS, where some
of transactions are executing on nomadic hosts, whose position in the network changes with
time. The number of transactions that retain recapture-pinpoints in a particular instigation is
curtailed to 1) evade awakening of Nm_Nds in doze manner of transaction, 2) curtail thrashing
of Nm_Nds with ARL-agglomeration activity, 3) retain inadequate battery life of Nm_Nds and
stumpy bandwidth of wireless channels. In least transaction (rock-bottom interacting

INSTANTANEOUS SNAPSHOT-BASED MINIMUM-PROCESS ACCORDANT RECOVERY LINE AGGLOMERATION BLUEPRINT FOR
FAULT-RESILIENT MOBILE DISTRIBUTED SYSTEMS

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 202

transaction) ARL-agglomeration etiquettes, some inoperative recapture-pinpoints are recorded
or impeding of transactions takes place. In this paper, we propose a least transaction
orchestrated ARL-agglomeration etiquette for non-deterministic Nomadic system, where no
unworkable recapture-pinpoints are hoarded. Prakash Singhal [12] endorsed that a good ARL-
agglomeration blueprint for nomadic systems should have low reminiscence overheads on
Nm_Nds, low overheads on wireless channels and should avoid awakening of a Nm_Nd in
doze manner. The Disjointedness of Nm_Nds should not lead to infinite wait state. The
blueprint should be non-intrusive, orchestrated, and should force rock-bottom number of
transactions to retain their native recapture-pinpoints.

Rock-bottom-transaction orchestrated ARL-agglomeration is an attractive methodology to
introduce culpability immunity in nomadic systems transparently. It avoids domino-effect,
minimizes stable storage requirements, and forces only rock-bottom interacting transactions to
retain recapture-pinpoint. To recuperate from a disappointment, the system simply restarts its
execution from a previous consistent all-inclusive recapture-pinpoint hoarded on the stable
storage. But, it has the following disadvantages. Some intrusion of transactions takes place or
some inoperative recapture-pinpoints are hoarded. In order to record a consistent all-inclusive
recapture-pinpoint, transactions must synchronize their ARL-agglomeration activities. In other
words, when a transaction pledges ARL-agglomeration tactic, it asks all applicable transactions
to retain their recapture-pinpoints. Therefore, orchestrated ARL-agglomeration suffers from
high overhead associated with the ARL-agglomeration coordination. Sometimes, recapture-
pinpoint order numbers are piggybacked along with computation missives. If a solitary
transaction flops to retain recapture-pinpoint, the whole ARL-agglomeration effort of the
commencement goes waste [13, 14, 15, 16, 17].

 While handling nomadic systems, we come across some issues like: Suppleness, low
bandwidth of wireless channels and dearth of stable storage on nomadic nodes, disconnections,
inadequate battery power and high disappointment rate of nomadic nodes. These issues make
traditional ARL-agglomeration techniques planned for Distributed systems unbefitting for
Nomadic environments. In this paper, we propound a rock-bottom transaction blueprint for
Nomadic systems, where no inoperative recapture-pinpoints are hoarded and an effort has been
made to moderate the intrusion of transactions. We propose to delay the processing of selective
missives at the receiver end only during the ARL-agglomeration period. A transaction is
allowed to carry out its normal computations and ship missives during its intrusion period. In
this way, we try to keep intrusion of transactions to bare rock-bottom. In order to keep the
intrusion time rock-bottom, we grab the causal-interrelationships vectors and compute the
accurate rock-bottom set in the beginning of the blueprint. In orchestrated ARL-
agglomeration, if a solitary transaction flops to retain its recapture-pinpoint; all the ARL-
agglomeration effort goes waste, because, each transaction must terminate its partially-
perpetual recapture-pinpoint. In order to retain its partially-perpetual recapture-pinpoint, a
Nm_Nd needs to transfer large recapture-pinpoint data to its native Nm_Spp_St over wireless
channels. The ARL-agglomeration effort may be remarkably high due to recurrent forsakes
especially in nomadic systems. We try to curtail the loss of ARL-agglomeration effort when
any transaction flops to retain its recapture-pinpoint in coordination with others. In the first

INSTANTANEOUS SNAPSHOT-BASED MINIMUM-PROCESS ACCORDANT RECOVERY LINE AGGLOMERATION BLUEPRINT FOR
FAULT-RESILIENT MOBILE DISTRIBUTED SYSTEMS

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 203

phase, we retain instantaneous recapture-pinpoints only. In this case, if any transaction flops to
retain its recapture-pinpoint in the first phase, all concerned transactions need to terminate their
instantaneous recapture-pinpoints only and not the partially-perpetual ones as in [9, 10].

II. PROPOSED RESEARCH IDEA
The endorsed propound is contingent on keeping track of direct dependencies of transactions.
Like [10], motivator transaction grabs the direct causal-interrelationships vectors of all
transactions, computes rock-bottom set, and ships the recapture-pinpoint requisition along with
the rock-bottom set to all transactions. In this way, intrusion time has been expressively
reduced as compared to Koo_Toueg blueprint [2].

During the period, when a transaction ships its causal-interrelationships set to the motivator
and obtains the rock-bottom set, may receive some missives, which may add new members to
the already computed rock-bottom set. We define this period as the uncertainty period or the
intrusion period of a transaction. This period is negligibly trivial. Hence the intrusion time of
a transaction in the endorsed propound is quite low. In order to keep the computed rock-bottom
set intact, we have classified the missives at a transaction, received during its uncertainty
period, into two types: (i) missives that alter the causal-interrelationships set of the receiver
transaction (ii) missives that do not alter the causal-interrelationships set of the receiver
transaction. The missives in point (i) need to be delayed at the receiver side. The missives in
point (ii) can be treated normally. All transactions can carry out their normal computations and
ship missives during their intrusion period. When a transaction buffers an application-message
of former type, it does not transaction any application-message till it obtains the rock-bottom
set so as to keep the proper order of missives received. When a transaction gets the rock-bottom
set, it saves the recapture-pinpoint, if it is in the rock-bottom set. After this, it obtains the
buffered missives, if any. A transaction, not in the rock-bottom set, comes out of the intrusion
state immediately after getting the rock-bottom set. The endorsed rock-bottom-transaction
intrusion blueprint forces zero inoperative recapture-pinpoints at the cost of very trivial
intrusion.

In rock-bottom-transaction orchestrated ARL-agglomeration, the motivator transaction asks all
communicating transactions to retain partially-perpetual recapture-pinpoints. In this propound,
if a solitary transaction flops to retain its recapture-pinpoint; all the ARL-agglomeration effort
goes waste, because, each transaction has to terminate its partially-perpetual recapture-
pinpoint. In order to retain the partially-perpetual recapture-pinpoint, a Nm_Nd needs to
transfer large recapture-pinpoint data to its native Nom_Suppt_St over wireless channels. Due
to recurrent forsakes, total ARL-agglomeration effort may be remarkably high, which may be
undesirable in nomadic systems due to scarce resources. Recurrent forsakes may happen in
nomadic systems due to fatigued battery, abrupt Disjointedness, or bad wireless connectivity.
Therefore, we propose that in the first phase, all concerned Nm_Nds will retain instantaneous
recapture-pinpoint only. Instantaneous recapture-pinpoint is stored on the reminiscence of
Nm_Nd only. In this case, if some transaction flops to retain recapture-pinpoint in the first
phase, then Nm_Nds need to terminate their instantaneous recapture-pinpoints only. The effort
of arresting an instantaneous recapture-pinpoint is insignificant as compared to the partially-

INSTANTANEOUS SNAPSHOT-BASED MINIMUM-PROCESS ACCORDANT RECOVERY LINE AGGLOMERATION BLUEPRINT FOR
FAULT-RESILIENT MOBILE DISTRIBUTED SYSTEMS

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 204

perpetual one. Hence, in case of a disappointment during ARL-agglomeration, the loss of ARL-
agglomeration effort is expressively reduced. When the motivator discovers that all applicable
transactions have hoarded their instantaneous recapture-pinpoints, it asks all applicable
transactions to come into the second phase, in which, a transaction transforms its instantaneous
recapture-pinpoint into partially-perpetual one. In this way, by increasing trivial orchestration
application-message overhead, we are able to handle recurrent forsakes during ARL-
agglomeration due to disappointment of some node or application-message channel and, in
turn, try to reduce the total ARL-agglomeration effort.

III. AN EXAMPLE OF THE ENDORSED ETIQUETTE
We explain the endorsed rock-bottom-transaction ARL-agglomeration blueprint with the help
of an example. In Figure 1, at time t1, P4 pledges ARL-agglomeration transaction and ships
requisition to all transactions for their causal-interrelationships vectors. At time t2, P4 obtains
the causal-interrelationships vectors from all transactions (not shown in the Figure 1) and
computes the rock-bottom set (rock_bott_vtr[]) which is {P3, P4, P5}.
 P4 ships rock_bott_vtr[]to all transactions and saves its own instantaneous recapture-
pinpoint. A transaction saves its instantaneous recapture-pinpoint if it is a member of
rock_bott_vtr[]. When P3 and P5 get the rock_bott_vtr[], they find themselves in the
rock_bott_vtr[]; therefore, they retain their instantaneous recapture-pinpoints. When P0, P1

and P2 get the rock_bott_vtr [], they find that they do not belong to rock_bott_vtr [], therefore,
they do not retain their instantaneous recapture-pinpoints.
 A transaction comes into the intrusion state immediately after shipping the causal-
interrelationships vector to the motivator. A transaction comes out of the intrusion state only
after arresting its instantaneous recapture-pinpoint if it is a member of the rock-bottom set;
otherwise, it comes out of intrusion state immediately after getting the instantaneous recapture-
pinpoint requisition. P4 obtains m4 during its intrusion period. _st[] is a direct causal-
interrelationships vector maintained at every transaction. As ci_vctr_st4[5] =1 due to m3, and
receive of m4 will not alter ci_vctr_st4[]; therefore, P4 transactions m4. P1 obtains m5 from P2
during its intrusion period; ci_vctr_st1[2]=0 and the receiver of m5 can alter ci_vctr_st1[];
therefore, P1 buffers m5. Correspondingly, P3 buffers m6. P3 computes m6 only after arresting
its instantaneous recapture-pinpoint. P1 transaction m5 after getting the rock_bott_vtr []. P2
transactions m7 because at this moment it not in the intrusion state. Correspondingly, P3
computes m8. At time t3, P4 obtains rejoinders to instantaneous checkpoint appeals from all
applicable transactions (not shown in the Figure 1) and ships partially-perpetual recapture-
pinpoint requisition to all concerned transactions. A transaction in the rock-bottom set
transforms its instantaneous recapture-pinpoint into partially-perpetual one. In conclusion, at
time t4, P4 obtains rejoinders to partially-perpetual recapture-pinpoint appeals from all
applicable transactions (not shown in the Figure 1) and ships the commit requisition . In this
case, P3, P4 and P5 advance their recovery line by arresting new recapture-pinpoints in the new
commencement of the ARL-agglomeration blueprint , whereas, P0, P1 and P2 do not advance
their recovery line. In this case if some disappointment occurs, P0, P1 and P2 will roll back to
their initial state and P3, P4 and P5 will roll back to their perpetual state.

INSTANTANEOUS SNAPSHOT-BASED MINIMUM-PROCESS ACCORDANT RECOVERY LINE AGGLOMERATION BLUEPRINT FOR
FAULT-RESILIENT MOBILE DISTRIBUTED SYSTEMS

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 205

Fig 1: An Example of the endorsed Blueprint

IV. THE ENDORSED ETIQUETTE
When a Nm_Nd ships an application application-message, it is first sent to its native
Nm_Spp_St over the wireless cell. The Nm_Spp_St piggybacks apposite information with the
application application-message, and then routes it to the destination Nm_Spp_St or Nm_Nd.
When the Nm_Spp_St obtains an application application-message to be forwarded to a native
Nm_Nd, it first updates the data structures that it preserves for the Nm_Nd, strips all the
piggybacked information, and then forwards the application-message to the Nm_Nd. Thus, a
Nm_Nd ships and obtains application missives that do not contain any additional information;
it is only responsible for recording its native state appropriately and relocating it to the native
Nm_Spp_St.
 The motivator Nm_Spp_St ships a requisition to all Nm_Spp_Sts to ship the
ci_vctr_st vectors of the transactions in their cells. All ci_vctr_st vectors are at Nm_Spp_Sts
and thus no initial ARL-agglomeration missives or rejoinders travels wireless channels. On
receiving the ci_vctr_st [] requisition, an Nm_Spp_St records the identity of the motivator
transaction and motivator Nm_Spp_St (say mss_ida), ships back the ci_vctr_st [] of the
transactions in its cell, and sets g_snpsht. If the motivator Nm_Spp_St obtains a requisition for
ci_vctr_st [] from some other Nm_Spp_St (say mss_idb) and mss_ida is lower than mss_idb,
the, current commencement with mss_ida is discarded and the new one having mss_idb is
continued. Correspondingly, if an Nm_Spp_St obtains ci_vctr_st appeals from two

INSTANTANEOUS SNAPSHOT-BASED MINIMUM-PROCESS ACCORDANT RECOVERY LINE AGGLOMERATION BLUEPRINT FOR
FAULT-RESILIENT MOBILE DISTRIBUTED SYSTEMS

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 206

Nm_Spp_Sts, then it throw-outs the requisition of the motivator Nm_Spp_St with lower
mss_id. If an Nm_Spp_St obtains a new recapture-pinpoint commencement requisition from
some transaction in its cell and the flag g_snpsht is already set, then the Nm_Spp_St will throw-
out this new commencement to avoid concurrent execution of the ARL-agglomeration
blueprint. Otherwise, on receiving ci_vctr_st vectors of all transactions, the motivator
Nm_Spp_St computes rock_bott_vtr [], ships instantaneous recapture-pinpoint requisition
along with the rock_bott_vtr [] to all Nm_Spp_Sts. When a transaction ships its ci_vctr_st []
to the motivator Nm_Spp_St, it comes into its intrusion state. A transaction comes out of the
intrusion state only after arresting its instantaneous recapture-pinpoint if it is a member of the
rock-bottom set; otherwise, it comes out of intrusion state after getting the instantaneous
recapture-pinpoint requisition.
 On receiving the instantaneous recapture-pinpoint requisition along with the
rock_bott_vtr [], an Nm_Spp_St, say Nm_Spp_Stj, saves the following actions. It ships the
instantaneous recapture-pinpoint requisition to Pi only if Pi affiliates to the rock_bott_vtr [] and
Pi is running in its cell. On receiving the recapture-pinpoint requisition, Pi saves its
instantaneous recapture-pinpoint and informs Nm_Spp_Stj. On receiving positive rejoinder
from Pi, Nm_Spp_Stj updates p-csni, resets intrusioni, and ships the buffered missives to Pi, if
any. Alternatively, If Pi is not in the rock_bott_vtr [] and Pi is in the cell of Nm_Spp_Stj,
Nm_Spp_Stj resets intrusioni and ships the buffered application-message to Pi, if any. For a
disconnected Nm_Nd, that is a member of rock_bott_vtr [], the Nm_Spp_St that has its
disconnected recapture-pinpoint, transforms its disconnected recapture-pinpoint into the
required one.
 During intrusion period, Pi computes m, received from Pj, if all of the following
conditions are met:
(i) (!buferi) i.e. Pi has not buffered any application-message
(ii) (m.p_csn =csn[j]) i.e. Pj has not hoarded its recapture-pinpoint before shipping m and
(ci_vctr_sti[j] =1) Pi is already reliant on Pj in the current CI
 or
m.p_csn <csn[j]. Pj has hoarded some permanent recapture-pinpoint after shipping m.
Otherwise, if any of these three conditions is not met, the native Nm_Spp_St of Pi buffers m
for the intrusion period of Pi and sets bufferi.
 When a Nm_Spp_St concludes that all its transactions in rock-bottom set have
hoarded their instantaneous recapture-pinpoints or at least one of its transactions has
nosedived to retain recapture-pinpoint, it ships the rejoinder application-message to the
motivator Nm_Spp_St. In this case, if some transaction flops to retain instantaneous recapture-
pinpoint in the first phase, then concerned Nm_Nds need to terminate their instantaneous
recapture-pinpoints only. The effort of arresting an instantaneous recapture-pinpoint is
insignificant and less than 1% as compared to the partially-perpetual one [6]. In this way, the
loss of ARL-agglomeration effort, in case of an terminate of the ARL-agglomeration tactic,
is expressively low. We want to further emphasize that the recurrent forsakes is an inevitable
feature in orchestrated ARL-agglomeration in nomadic systems due to fatigued battery, abrupt
Disjointedness, or bad wireless connectivity. When the motivator Nm_Spp_St discovers that
all applicable transactions have hoarded their instantaneous recapture-pinpoints, it asks all

INSTANTANEOUS SNAPSHOT-BASED MINIMUM-PROCESS ACCORDANT RECOVERY LINE AGGLOMERATION BLUEPRINT FOR
FAULT-RESILIENT MOBILE DISTRIBUTED SYSTEMS

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 207

applicable transactions to come into the second phase, in which, a transaction transforms its
instantaneous recapture-pinpoint into partially-perpetual one.
 In conclusion, motivator Nm_Spp_St ships commit or terminate to all transactions.
On receiving terminate, transactions throw-out its partially-perpetual recapture-pinpoint, if
any, and undo the updating of data structures. On receiving commit, transactions, in the
rock_bott_vtr [], convert their partially-perpetual recapture-pinpoints into permanent ones. On
receiving commit or terminate, all transactions update their ci_vctr_st vectors and other data
structures.

V. COMPARISON WITH OTHER ALGORITHMS
The Koo-Toueg [2] blueprint is a rock-bottom-transaction orchestrated ARL-agglomeration
blueprint for distributed systems. It requires transactions to be blocked during ARL-
agglomeration. ARL-agglomeration includes the time to find the rock-bottom interacting
transactions and to retain the state of transactions on stable storage, which may be too long. In
Cao-Singhal blueprint [9], intrusion time is reduced expressively as compared to [2].

 The algorithms endorsed in [6, 12] are non-intrusive, but they suffer from inoperative
recapture-pinpoints. It should be distinguished that inoperative recapture-pinpoints are
undesirable in nomadic systems due to scarcity of resources. In the endorsed propound, the
orchestration application-message is on higher side. We add two extra phases, one to grab the
causal-interrelationships vectors and another to retain the instantaneous recapture-pinpoints.
First phase is added to compute the accurate rock-bottom set in the beginning of the blueprint
to curtail the intrusion time as in [2]. In order to curtail the loss of ARL-agglomeration effort
when any transaction flops to retain its recapture-pinpoint in coordination with others, all
applicable transactions retain instantaneous recapture-pinpoints in the first phase and convert
their instantaneous recapture-pinpoints into partially-perpetual recapture-pinpoints in the
second phase. In this way, by adding extra orchestration application-message overhead, we are
able to deal with the problem of recurrent forsakes in coordinating ARL-agglomeration. In case
of recurrent forsakes, we expressively reduce loss of ARL-agglomeration effort as compared
to [2, 5, 6]. Because, in all these blueprints, in case of an terminate of the ARL-agglomeration
tactic, all concerned transactions need to terminate their partially-perpetual recapture-
pinpoints, whereas, in the endorsed blueprint, all concerned transactions need to terminate their
instantaneous recapture-pinpoints. In case of a Nm_Nd, the cost of arresting an instantaneous
recapture-pinpoint is insignificant and is less than 1% as compared to the cost of arresting a
partially-perpetual recapture-pinpoint. Recurrent forsakes may occur in orchestrated ARL-
agglomeration in nomadic systems due to Suppleness, low bandwidth of wireless channels,
disconnections and inadequate battery power.

VI. CONCLUSION
We have endorsed a rock-bottom transaction orchestrated ARL-agglomeration blueprint for
nomadic system, where no inoperative recapture-pinpoints are hoarded and an effort is made
to curtail the intrusion of transactions. We are able to reduce the intrusion time to bare rock-
bottom by computing the accurate rock-bottom set in the beginning. Furthermore, the intrusion
of transactions is reduced by allowing the transactions to carry out their normal computations

INSTANTANEOUS SNAPSHOT-BASED MINIMUM-PROCESS ACCORDANT RECOVERY LINE AGGLOMERATION BLUEPRINT FOR
FAULT-RESILIENT MOBILE DISTRIBUTED SYSTEMS

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 208

and ship missives during their intrusion period. The number of transactions that retain
recapture-pinpoints is diminished to avoid awakening of Nm_Nds in doze manner and
thrashing of Nm_Nds with ARL-agglomeration activity. It also saves inadequate battery life
of Nm_Nds and low bandwidth of wireless channels. We try to reduce the loss of ARL-
agglomeration effort when any transaction flops to retain its recapture-pinpoint in
coordination with others.

REFERENCES
[1] Chandy K.M. and Lamport L., “Distributed snapshots : Determining Recovery Line of
Distributed Systems, “ ACM Transaction on Computing Systems, vol., 3 No. 1, pp 63-75,
February, 1985.
[2] Koo R. and Tueg S., “Checkpointing and Rollback recovery for Distributed Systems”,
IEEE Trans. On Software Engineering, Vol. 13 no. 1, pp 23-31, January 1987.
[3] Elonzahy E.N., Alvisi L., Wang Y.M. and Johnson D.B., “A survey of Rollback-Recovery
etiquettes in message-Passing Systems”, ACM Computing surveys, vol. 34 no. 3, pp 375-408,
2002.
[4] L. Alvisi,“ Understanding the message Logging Paradigm for Masking Transaction
Crashes,“ Ph.D. Thesis, Cornell Univ., Dept. of Computer Science, Jan. 1996. Available as
Technical Report TR-96-1577.
[5] Lalit Kumar P. Kumar “A synchronous checkpointing etiquette for mobile distributed
systems: probabilistic approach” Int Journal of information and computer security 2007.
[6] Cao, M.Singhal, “Mutable Checkpointing : A New DRL-accumulation Approach for
Mobile Computing Systems”, IEEE Transactions on Parallel and Distributed system, vol.12,
Issue 2, Feb., 2001, pages: 157-172, ISSN: 1045-9219.
[7] Acharya A. and Badrinath B. R., “Checkpointing Distributed Applications on Mobile
Computers,” Proceedings of the 3rd International Conference on Parallel and Distributed
Information Systems, pp. 73-80, September 1994.
[8] M. Singhal and N. Shivaratri, Advanced Concepts in Operating Systems, New York,
McGraw Hill, 1994.
[9] Cao G. and Singhal M., “On coordinated Checkpointing in Distributed Systems”, IEEE
Transactions on Parallel and Distributed Systems, vol. 9, no.12, pp. 1213-1225, Dec 1998.
 [10] Cao G. and Singhal M., “On the Impossibility of Minimum process Non-intrusion
Checkpointing and an Efficient Checkpointing Etiquette for Mobile Computing Systems,”
Proceedings of International Conference on Parallel Methoding, pp. 37-44, August 1998.
 [11] Kumar, P.,” A Low-Cost Hybrid Coordinated Checkpointing Etiquette for Mobile
Distributed Systems”, Mobile Information Systems pp 13-32, Vol. 4, No. 1. ,2007.
 [12] Prakash R. and Singhal M., “Low-Cost Checkpointing and Failure Recovery in Mobile
Computing Systems,” IEEE Transaction On Parallel and Distributed Systems, vol. 7, no. 10,
pp. 1035-1048, October1996.
 [13] Houssem Mansouri, Nadjib Badache, Makhlouf Aliouat and Al-Sakib Khan Pathan,
“A New Efficient Checkpointing Algorithm for Distributed Mobile Computing”, Control
Engineering and Applied Informatics, Vol. 17, Issue: 2, Page No. 43-54, 2015.

INSTANTANEOUS SNAPSHOT-BASED MINIMUM-PROCESS ACCORDANT RECOVERY LINE AGGLOMERATION BLUEPRINT FOR
FAULT-RESILIENT MOBILE DISTRIBUTED SYSTEMS

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 209

 [14] Bakhta Meroufel and Ghalem Belalem, “Enhanced Coordinated Checkpointing in
Distributed System”, International Journal of Applied Mathematics and Informatics, Vol. 9,
Page No. 23-32, 2015.
 [15]Houssem Mansouri and Al-Sakib Khan Pathan, “Checkpointing Distributed Computing
Systems: An Optimization Approach”, International Journal High Performance Computing and
Networking, Vol. 15, No. 3/4, Page No. 202-209, 2019.
 [16] Praveen Choudhary, Parveen Kumar,” Low-Overhead Minimum-Transaction Global-
Snapshot Compilation Protocol for Deterministic Mobile Computing Systems”, International
Journal of Emerging Trends in Engineering Research” Vol. 9, Issue 8, Aug 2021, pp.1069-
1072
 [17] Deepak Chandra Uprety, Parveen Kumar, Arun Kumar Chouhary,” Transient
Snapshot based Minimum-process Synchronized Checkpointing Etiquette for Mobile
Distributed Systems”, International Journal of Emerging Trends in Engineering Research”, Vol
10, No 4, Aug. 2021.

