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ABSTRACT 

 The purpose of this paper is to obtain common fixed point theorem for six weakly 
compatible self maps in non complete non-Archimedean menger PM-spaces, without using the 
condition of continuity and give a set of alternative conditions in place of completeness of the 
space. 
Keywords: Non-Archimedean Menger PM-space, R-weakly commuting maps,  
 Common fixed points.  
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INTRODUCTION : 
 
 In 1998, Jungck & Rhodes [9] introduced the notion of weakly compatible maps and 
showed that compatible maps are weakly compatible but converse need not true. Sharma & 
Deshpande [14] improved the results of Sharma & Singh [13], Cho [3], Sharma & Deshpande 
[14]. Chugh and Kumar [4] proved some interesting results in metric spaces for weakly 
compatible maps without appeal to continuity. Sharma and deshpande [14] proved some results 
in non complete Menger spaces, for weakly compatible maps without appeal to continuity. 
 There have been a number of generalizations of metric spaces, one of them is designated 
as Menger space propounded by Menger [10] in 1972. In 1976, Jungck [6] established common 
fixed point theorems for commuting maps generalizing the Banach's fixed point theorem. Sessa 
[12] defined a generalization of commutativity called weak commutativity. Futher Jungck [7] 
introduced more generalized commutativity, which is called compatibility.  
 In this paper, we prove a common fixed point theorem for six maps has been proved 
using the concept of weak compatibility without using condition of continuity. We improve 
results of Sharma & Deshpande [14] and many others. For terminologies notations and 
properties of probabilistic metric spaces, we refer to [1], [2], [5]. 

2. DEFINITIONS AND PRELIMINARIES  : 
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Definition 2.1 Let X be any nonempty set and D be the set of all left continuous distribution 
functions. An order pair (X, F) is called a non-Archimedean probabilistic metric space, if F is 

a mapping from XX→D satisfying the following conditions. 
(i) Fx, y(t) = 1 for every t > 0 if and only if x = y, 

(ii) Fx, y(0) = 0 for x, y  X 

(iii) Fx, y(t) = Fy, x(t) for every x, y  x 
(iv) If Fx, y (t1) = 1 and Fy, z(t2) = 1, 

 Then Fx, z(max {t1, t2}) = 1 for every x, y, z  X, 

Definition 2.2 A Non- Archimedean Manger PM-space is an order triple         (X, F, ), where 

 is a t-norm and (X, F) is a Non-Archimedean PM-space satisfying the following condition. 

(v) Fx, z (max{t1, t2})   (Fx, y(t1), Fy, z(t2)) for x,y,z  X and t1, t2  0. 
 The concept of neighbourhoods in Menger PM-spaces was introduced by Schwizer-

Skla [16]. If xX, t > 0 and   (0, 1), then and (, λ)- neighbourhood of x, denoted by Ux (ε, 
2) is defined by 

 Ux(, )= {y  X:Fy, x(t)> 1-} 

 If the t-norm A is continuous and strictly increasing then (X, F, ) is a Hausdorff space 

in the topology induced by the family (Ux (t, y) : x  X, t > 0, λ  (0, 1)} of neighborhoods 
[16]. 

Definition 2.3: A t-norm is a function : [0, 1]  [0, 1] → [0, 1] which is associative, 

commutative, non decreasing in each coordinate and  (a, 1) = a for every a  [0, 1]. 

Definition 2.4 : A PM- space (X, F) is said to be of type (C)g if there exists a g 
such that 

 g(Fx, y(t))  g (Fx, z(t)) + g (Fz,y(t))  

for all x, y, z  X and t ≥ 0, where  =  {g : g [0, 1]  [0, ) is continuous, strictly decreasing, 
g(1) = 0 and g(0) > ∞}. 
Definition 2.5 : A pair of mappings A and S is called weakly compatible pair if they commute 
at coincidence points. 

Definition 2.6 : Let A, S: XX be mappings. A and S are said to be compatible if lim


 

g(FASxn, SAxn(t)) = 0  t > 0, 

whenever {xn} is a sequence in X such that lim


 Axn. = lim


  Sxn = z for some     z  X. 

Definition 2.7 : A Non-Archimedean Manger PM-space (X, F, ) is said to be of type (D)g if 

there exists a g   such that 

 g(A(S, t)  g(S) + g(t)) for all S, t [0, 1]. 

Proposition  2.1 : If a function  : [0, + ∞) → [0, - ∞) satisfying the condition   
 (Ø), then we have 

(1)  For all t  0, lim


   n (t) = 0, where n (t) is the n-th iteration of (t). 

(2)  If {tn} is non-decreasing sequence real numbers and tn+1   (tn),               n= 1,2,....., 

 then lim


  tn = 0. In particular, if t ≤ (t) for all t ≥ 0, then     t = 0, 

Proposition  2.2 : Let {yn} be a sequence in X such that lim


 Fy, yn+(t) = 1       for all t > 0, 
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 If the sequence {yn} is not a Cauchy sequence in X, then there exit 0 > 0, t0>0, two 
sequences {mi}, {ni} of positive integers such that 
 
(1)  mi > ni +1, ni → ∞ as i → ∞, 

(2)  Fymi, yni(t0) < 1- 0, and Fymi-1, yni(t0)  1 - 0, i = 1,2,.... 
3. Main Results : 
Theorem 3.1: Let A, B, S, T, P and Q be a mappings from X into X such that 

(i) P(X)AB(X), Q(X)  ST(X) 
(ii) g(FPx, Qy(t))  

 ≤ [max{g(FABy, STx(t)), g(FPx, STx(t)), g(FQy, ABy(t)), g(FQy, STx(t)),  g(FPx, 
ABy(t)}] 

 (for all x, yX and t > 0, where a function :[0,+)[0,+ ) satisfies the 
 condition (Ø). 
(iii) A(X) or B(X) is complete subspace of X, then 
 (a)  P and ST have a coincidence point. 
 (b)  Q and AB have a coincidence point. 
Further, if 
(iv)  The pairs (P, ST) and (Q, AB) are R-weakly compatible then A,B,S,T,P  and Q have 
a unique common fixed point. 

Proof : Since P(X)  AB(X) for any x0,  X, there exists a point x1 X 

Such that Px0 = ABx1. Since Q(X)  ST(X) for this point x1, we can choose a point x2  X 
such that Bx1 = Sx2 and so on. Inductively, we can define a sequence {yn} in X such that y2n = 
Px2n = ABx2n+1 and y2n+1 = Qx2n+1 = STx2n+2 for n =1,2,3........ 
Before proving our main theorem we need the following Lemma: 
Lemma 3.2 : Let A,B,S,T,P,Q:X→X be mappings satisfying the condition (i) and (ii). Then 
the sequence {yn} define above, such that 
 lim


  g(Fyn, yn+1 (t)) = 0 

For all t > 0 is a Cauchy sequence in X. 

Proof of Lemma 3.2: Since g  , it follows that 
lim


  Fyn, yn+1(t) = 1, for all t > 0 if and only if  lim


  g(Fyn, yn+1(t)) = 0 for all      t > 0. By 

proposition 2.2, if (yn) is not a Cauchy sequence in X, there exists      0 > 0, t > 0, two sequence 
{mi}, {ni} of positive integers such that 
(A)  mi > ni +1, and ni → ∞ as i → ∞, 

(B)  (Fymi, yni,(t)) > g(1- 0) and g(Fymi+1 yni(t0)) ≤g(1- 0), i = 1,2,3......  Thus we 
have 

 g(1- 0) < (Fymi, yni, (t)) 

       g(Fymi, y , (t0)) + g(Fy , yni (t0)) 

(v)       g(1- 0) + g(Fymi, y , (t0)) 

 Thus i0 in (v), we have 

(vi) lim


  g(Fy yni(t)) = g(1- 0). 

 On the other hand, we have 
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(vii) g(1- 0) <g(Fymi, yni(t0)) 
      <g(Fyni , y (t0)) +g(Fy , ymi (t0)) 

 Now, consider g(Fy , y  (t0)) in (vii). Without loss generality, assume that both ni 

and mi are even. Then by (ii), we have 
 g(Fy , ymi, (t0)) = g(FPx , Qx  (t0)) 

      Ø [max{g(FSTx , ABx  (t0)), 

         g(FSTx  , Px  (t0)), g(FABy  , 

        Qx (t0)), g(FSTx , Qx (t0)),  

         g(FABx , Px  (t0))}] 

(viii)     Ø [max{g(Fy , yni (t0)), 

         g(Fy , ymi (t0)), g(Fyni, yni+1(t0)),  

        g(Fyi-1,yni+1(t0)), g(Fyni, ymi, (t0))}] 
Using (vi), (vii), (viii) and letting i→ ∞ in (viii), we have 

 g(1- 0)  Ø [max{g(1- 0), 0, 0, g(1- 0), g(1- 0)}] 

 = Ø (g(1- 0)) 

 g(1- 0) < g(1- 0) 
which is a contradiction. Therefore {yn} is a Cauchy sequence in X. 
Proof of the Theorem 3.1: If we prove lim


 g(Fyn, yni+1 (t)) = 0 for all t > 0, Then by 

Lemma(3.2) the sequence {yn} define above is a Cauchy sequence in X.  
 Now, we prove lim


 g(Fyn, yn+1 (t)) = 0 for all t > 0. In fact by (ii), we have  

 g(Fy2n, y2n+1 (t)) = g(FPX2n, QX2n+1 (t)) 
         < Ø [max {g(FSTX2n, ABX2n, ABX2n+1 (t)), g(FSTX2n, 
    PX2n(t)), g(FABX2n+1 QX2n+1 (t)), g(FX2n,  
    QX2n+1(t)), g(FABXn+1 PX2 (t))}] 
      = Ø [max{g(Fy2n-1, y2n (t)), g(Fy2n-1 y2n (t)), 
    g(Fy2n, y2n+1(t)), g(Fy2n-1, y2n+1 (t))}],  
       = Ø [max{g(Fy2n-1, y2n (t)), g(Fy2n-1 y2n (t)), 
    g(Fy2n y2n+1(t)), g(Fy2n-1, y2n, (t)) + 
    g(Fy2n, y2n+1(t)), 0}] 
 If g(Fy2n-1, y2n (t) ≤ g(Fy2n, y2n+1(t) for all t > 0, then we have 
    g(Fy2n, y2n+1(t)) < Ø g(Fy2n, y2n, y2n+1(t)), 
Which means that, by proposition 2.1, g(Fy2n, y2n+1(t)) = 0 for all t > 0. 
Similarly, we have g(Fy2n,y2n+1(t)) = 0 for all t > 0. Thus we have 

lim


 g(Fyn, yn+1 (t)) = 0 for all t > 0. On the other hand, if g(Fy2n-1, y2n (t))  g(FY2n y2n+1(t)), 

then by (ii), we have g(Fy2n, y2n+1(t)) < g(Fy2n-1, y2n, (t)), for        t > 0. 
Similarly, g(Fy2n+1,y2n+2 (t)) ≤ g(Fy2n, y2n+1 (t)) for all t > 0. 
g(Fyn, yn+1 (t)) <g(Fyn-1,yn (t)), for all t > 0 and n= 1,2,3,....... 
Therefore by proposition (2.1) 
 lim


  g(Fyn, yn+1 (t)) = 0 for all t > 0, which implies that {yn} is a Cauchy sequence in 

X. 
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 Now suppose that ST(X) is a complete. Note that the subsequence (yn+1} is contained 

in ST(X) and a lim


 limit in ST(X). Say z. Let p(ST)-1 z. 

 
 We shall use that fact that the subsequence {y2n} also converges to z. By (ii), we have 
 g(FPp,y2n+1 (kt)) = g(FPp, Qx2n+1 (kt)) 
           < Ø [max{g(FST p, ABX2n+1 (t)),  
    g(FST p, Pp (t)), g(FAB X2n+1 
    Qx2n+1(t)), g(FST p, Qx2n+1 (t)),  
    g(FAB x2n+1, Pp (t))}] 
 = Ø [max{FST p, y2n (t), g(FST p,P p (t)), g(Fy2n Y2n+1(t)),  
    g(FST P,y2n+1(t)), g(Fy2n, Pp (t))}] 

 Taking the limit n, we obtain 
 g(FP p, z(kt)) ≤ Ø [max {g(Fz, z(t)), g(Fz, P p (t)), g(Fz, z(t), 
         g(Fz, z(t)), g(Fz, Pp (t))}] 
   <   Ø(g(FPp, z(t))), 
 For all t > 0,which means that Pp = z and therefore, Pp = ST p = z, i.e.   p is a coincidence 

point of  P and ST. This proves (i). Since P(X) AB(X) and, P p = z implies that z  AB(X). 

 Let q  (AB)-1 z. Then q = z. 
 It can easily be verified by using similar arguments of the previous part of the proof 
that Qq = z. 
 If we assume that ST(X) is complete then argument analogous to the previous 
completeness argument establishes (i) and (ii). 
 The remaining two cases pertain essentially to the previous cases. Indeed, if B(X) is 

complete, then by (3.1), z  Q(X)  ST(X). 
 Similarly if P(X) CAB(X). Thus (i) and (ii) are completely established. 
 Since the pair {P, ST} is weakly compatible therefore P and ST commute at their 
coincidence point i.e. PSTp = STPp or Pz = STz. Similarly               QABq = ABQq or Qz = 
AB z AB2 
Now, we prove that Pz = z by Lemma (3.2) we have 
 g(FPz, y2n+1(t)) 
  = g(FPZ, Qx2n+1(t)) 

   Ø [max{g(FSTZ, AB x2n+1)), g(FSTz, Pz(t)),  
     g(FAB x2n+1 Qx2n+1 (t)), g(FSTz, Qx2n+1(t)),  
     g(FST X2n+1, Pz(t))}]. 

By letting n∞, we have 
 g(FPz, z(t)) 

  Ø[max{g(FPz, z(t)), g(FPz, Pz(t)), g(Fz, z(t)), g(FPz, Pz(t)),             g(Fz, Pz(t))}], 
Which implies that Pz = z = STz. 
 This means that z is a common fixed point of A,B, S, T, P, Q. This completes the proof. 
Acknowledgment: The author is thankful to the referees for giving useful suggestions and 
comments for the improvement of this Result. 
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