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Abstract 
For every different odd primes p and q we attempt to construct a class of non- group 
semigroups of order pαqβ by using the semidirect product of monogenic semigroups of indices 
greater than 1. Necessary conditions are given for the power graphs of monogenic and 
constructed semigroups to be Eulerian or complete. 
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1 Introduction 
Because of many interesting applications of the fnite semigroups in mathematics, computer 
science and fnite machines, constructing any subclass of non-group semigroups is of interest 
especially when they are non-commutative. In this paper we intend to construct a class of such 
semigroups by using the semidirect product of monogenic semigroups of indices greater than 
1. The undirected power graphs of considered semigroups will be studied as well. Following 
[1, 2, 5, 6, 9] we recall the defnition of undirected power graph P(S), for an algebraic structure 
S. The vertex set of P(S) is S and two vertices x and y are adjacent if and only if x = ym or y = 
xm, for some integer m ≥ 2. Following [10, 12] and present the defnition of semidirect product 
of two semigroups. For two semigroups S,T and a homomorphism ϕ : T → End(S) the 
semidirect product of S by T, denoted by S ⋊ϕ T is a semigroup consists of the ordered pairs 
(s,t) where, s ∈ S and t ∈ T such that the multiplication is defned by: 
(s,t)(s′,t′) = (sϕt(s′),tt′),ϕ(t) = ϕt ∈ End(S) 
For all s,s′ ∈ S and t,t′ ∈ T. 
 
As of the last notation on the semigroups we follow [3, 4, 7, 8, 11]. The preliminaries on the 
semigroup theory may be found in [7, 8]. For detailed information on the semigroup (or 
monoid) presentations one may consult [3, 4, 11]. We prefer to give a brief history on the 
fnitely presented semigroups and monoids. A semigroup (or monoid) S is said to be presented 
by a semigroup (or monoid) presentation ⟨A|R⟩ if S =∼ A+/ρ(orS =∼ A∗/ρ) where, A is an 
alphabet, A+ is the free semigroup on A, A∗ = A ∪ {1} , ρ is a congruence on A (or A∗) generated 
by R and R ⊆ A+ × A+ (or R ⊆ A∗ × A∗). As usual, we will use the notations Sg(π) and Mon(π) 
for the semigroup and the monoid presented by the presentation π = ⟨A|R⟩ , respectively. 
Through the paper p and q are odd primes, α,β,r and s are positive numbers such that r,s ≥ 2. 
Without lose of generality suppose that pα < qβ and consider the presentation πk,t = ⟨a|ak+1 = at⟩ 
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. Let T1 = Sg(πpα,r) = ⟨a⟩,T2 = Sg(πqα,s) = ⟨b⟩ and S = T1 ⋊ϕ T2. As a preliminary result on the 
semigroups we get: 
Lemma 1.1. For every positive integer k the relators akpα = ak(r−1) and apkα = a(r−1)k hold in the 
semigroup T1. Moreover, the group End (T1) possesses an involution element. 
Proof. Consider the relator apα+1 = ar. Since apα = apα+1−1 = ar−1 then both of the- relators hold 
for k = 1. Now, by an induction method on k and using the induction hypothesis we get: 

 
and  

 
 
To complete the proof we may defne the homomorphism θ ∈ End (T1) by θ (a) = apα−r Then, 

 
Consequently, θ3 = θ.  
By this endomorphism we may define the mapping ϕ : T2 → End(T1) as follows. 

 
for every values of i and j where, 1 ≤ i ≤ pα and 1 ≤ j ≤ qβ. The equation ϕ(bjbj′) = ϕ(bj)ϕ(bj′) 
may be proved by considering four possible cases for j and j′. Then, ϕ is a semigroup 
homomorphism. 
This definition makes possible to formulate the multiplication on the semigroup S = T1 ⋊ϕ T2 

as follows: 

 
 
Every element of S may be presented explicitly in terms of the elements 
x = (a,b), Ai = (ai,b), Bj = (a,bj), (i = 2,3,...,pα), (j = 2,3,...,qβ) 
Indeed, 
 
Lemma 1.2. If  then X generates S. 
 
Proof. It is suffcient to show that every element (ai,bj) may be rewritten as a product of the 
elements of X, for every i and j when 2 ≤ i ≤α pα and 2 ≤ j ≤β qβ. Indeed, by the defined 
multiplication on S and by considering the relators ap +1 = ar and bq +1 = bs of the semigroups T1 

and T2, we get: 
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Also, the following key lemma gives us useful information of the powers of elements of the 
semigroup S. These information could be applicable in study of the power graph of S.                     

 

Lemma 1.3. (i). For every i and k where 2 ≤ i ≤ pα and , 

 

(ii). for every i and k where and  
 
The powers are reduced modulo pα- 1. 
(iii). For every i where 2 ≤ i ≤ qβ. 

 

 

Proof. Proofs are easy by using induction methods and considering the results of Lemma 1.2. 
 
2 The power graphs 
The semigroups T1; T2 and S are as in the last section. First of all, we follow [5, 6] and recall 
two 
results on the power graphs of the abelian groups. 
 
Lemma 2.1. (Theorem 2,12 of [5]). For a finite group G, P(G) is complete if and only if G is 
the cyclic group of order of a prime. 
 
Lemma 2.2. (Theorem 5 of [6]). G is a finite group of order p1q1 where p1 and q1 are primes 
and p1 > q1 . Then, 
 
(i). G is cyclic if and only if P(G) ≃ (Kp1−1 ∪ Kq1−1) + Kϕ(p1q1)+1, (ϕ is the well-known Eulerian 
function). 
 
(ii). G is not cyclic if and only if P(G) ≃ K1 + (pKq1−1 ∪ Kp1−1). 
 
Proposition 1. For every positive integer α and an odd prime p let T1 be the non- group 
monogenic semigroup presented by the presentation ⟨a|apα+1=a2⟩. Then, P(T1) ≃ Kpα if and only 
if pα − 1 is a power of a prime or is a product of two different primes. 
 
Proof. Suppose that the graph P(T) is a complete and n is not a power of a prime. Then there 
exist at least two different primes p1 and p2 dividing n. So, cp1 and cp2 as the vertices of P(T) 
are adjacent. This means that for some positive integers k and k′,cp2 = ckp1 or cp1 = ck′p2. By using 
he results of Lemma 1.1 the relator an+1 = at yields the relator ak(n+1−t) = an+1−t, for every integer 
k ≥ 2. Now, in the case when cp2 = ckp1 we get the equation p2 = p1+(n−t+1). Hence, p2 divides 
p1 − t + 1, i.e.; p1 − t + 1 = t1p2, for some positive integer t1. Eliminating p1 in 
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Gives us the contradiction p2 = n + t1p2 > p2. A similar contradiction occurs when cp1 = ck′p2 . 
 
Consequently, n is as a power of a prime. Conversely, every element ai,(i ≥ 2) of the semigroup 
T1 = {a,a2,...,apα} as a vertex of P(T1) is adjacent with the vertexα a. Moreover, G = {a2,...,apα} 
is a cyclic subgroup of T1 with the identity element e = ap −1. This group may be generated by 
c = apα, for, 

(by Lemma1.1and setting r = 2) 
For every i = 2,3,...,pα −1. Suppose that pα −1 is a power of a prime p0, since p is odd then p0 = 
2. Hence, by the Lemma 2.1, P(G) is complete and then P(T1) is so. 
 
In the case when pα − 1 is a product of two different primes, a same proof may be given by by 
using the Lemma 2.2, because G is a cyclic group.  
 
In this proposition we studied the power graph of the semigroup T1 when r = 2. When r ≥ 3, 
the power graph of the corresponding subgroup may or may not be cyclic. Hence, the above 
lemmas on the power graphs of finite groups are not applicable to study of the power graphs 
of semigroups. In the following proposition we study the case r ≥ 3 and show that the abelianity 
of the corresponding subgroup may cause the Eulerianity of the power graph of the semigroup 
T1. 
 
Proposition 2. For every positive integers α,r ≥ 2 and any odd prime p, the semigroup T1 

contains a cyclic subgroup G1 of order pα − r + 1. Moreover, if P(G1) is complete then P(T1) is 
Eulerian. 
 
Proof. As well as in the last proposition, each element of the subset {a2,...,aα} of T1 is a power 
of the element a ∈ T1. Then, the vertex a is adjacent with all other vertices of P(T1). Since apα+1 

= ar then T1 contains the cyclic subgroup 

 
 
of order apα−r+1. This may be proved by considering the elements a1 = apα−r+2 and c1 = apα−r+1. 
The element a1 generates G1, for, 
 

 
 
Where, r ≤ i ≤ pα. And c1 is the identity element of G1 because of the following relators: 

 
 
To complete the proof suppose that the graph P(G1) is complete. Then, any two vertices 
ofP(G1) are adjacent. By considering the vertices {a2,...,ar−1} of the graph P(T1) we have to 
show that at least one vertex ai of this set is adjacent with at least one vertex of P(G1). Consider 
two cases for r. For even values of r, consider the vertex a2 where we get and 

(ar) are adjacent in this case, and (a2) is adjacent with ar+1 when r is odd, i.e.  
Consequently, the completeness of the graph P(G1) yields that P(T1) is Eulerian.  
 
To study the power graph of the semigroup S recall the parameters p,q,r and s as well as in 
Section 1 where we set r = s = 2. Our result concerning the graph P(S) is: 
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Proposition 3. The semigroup S possesses a unique non-abelian maximal sub group G of order 
(pα − r + 1)(qβ − s + 1). Moreover, if P(G) is complete then P(S) is Eulerian. 
 
Proof. We construct the group G = G1⋊G2 such that G1 = ⟨a1⟩ and G2 = ⟨a2⟩ where, a1 = apα−r+1 

and a2 = bqβ−s+1. Note that the semidirect product of a group by another group is defined as 
similar as in the semigroups except when End will be changed to Aut. As well as in the last 
proposition it may be proved that c1 = apα−r+1 and c2 = bqβ−s+1 are the identity elements of the 
groups G1 and G2, respectively. Evidently, by letting r = s = 2, G is the unique maximal 
subgroup of the semigroup S and S = X ∪ G. Suppose that the graph P(G) is complete then, to 
prove that P(S) is Eulerian it is sufficient to show that every element of X (as a vertex of P(S)) 
is adjacent with at least one vertex of P(G) Indeed, Lemma 1:3-(i) yields, 

 
 
So, each Ai adjacent with (apα−r+1,b2). Also, the part (ii) of the same lemma gives us 
3 Conclusion 
The corresponding maximal subgroup G of the semigroup S where r = s = 2, is a non-abelian 
group of order (pα − 1)(qβ − 1). During the following examples we examine certain subclasses 
of S to determine related behaviours of the power graphs of S and G. 
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