ISSN: 1004-9037
 Journal of
 Data Acquisition and Processing
 POWER GRAPHS OF NON-GROUP SEMIGROUPS OF ORDER $\boldsymbol{p}^{\alpha} \boldsymbol{q}^{\beta}$

M. Pourhasan ${ }^{1 *}$, H. Doosti ${ }^{2}$
${ }^{1 *}$ Mathematics Department, Science and Research Branch, Islamic Azad University, Tehran, Iran
E-mail:- p.masoud81@gmail.com
${ }^{2}$ Mathematics Department, Science and Research Branch, Islamic Azad University, Tehran, Iran
E-mail:- doostih@khu.ac.ir
*Corresponding Author: - M. Pourhasan
*Mathematics Department, Science and Research Branch, Islamic Azad University, Tehran, Iran
E-mail:- p.masoud81@gmail.com

Abstract

For every different odd primes p and q we attempt to construct a class of non- group semigroups of order $p^{\alpha} q^{\beta}$ by using the semidirect product of monogenic semigroups of indices greater than 1 . Necessary conditions are given for the power graphs of monogenic and constructed semigroups to be Eulerian or complete.

Keywords: Power graphs, non-group semigroups, semidirect product.
2010 AMS Mathematics Subject Classification: 20M05, 20M14 . *

1 Introduction

Because of many interesting applications of the fnite semigroups in mathematics, computer science and fnite machines, constructing any subclass of non-group semigroups is of interest especially when they are non-commutative. In this paper we intend to construct a class of such semigroups by using the semidirect product of monogenic semigroups of indices greater than 1. The undirected power graphs of considered semigroups will be studied as well. Following $[1,2,5,6,9]$ we recall the defnition of undirected power graph $P(S)$, for an algebraic structure S. The vertex set of $P(S)$ is S and two vertices x and y are adjacent if and only if $x=y^{m}$ or $y=$ x^{m}, for some integer $m \geq 2$. Following [10,12] and present the defnition of semidirect product of two semigroups. For two semigroups S, T and a homomorphism $\phi: T \rightarrow \operatorname{End}(S)$ the semidirect product of S by T, denoted by $S \rtimes \phi T$ is a semigroup consists of the ordered pairs (s, t) where, $s \in S$ and $t \in T$ such that the multiplication is defned by:
$(s, t)\left(s^{\prime}, t^{\prime}\right)=\left(s \phi_{t}\left(s^{\prime}\right), t t^{\prime}\right), \phi(t)=\phi_{t} \in \operatorname{End}(S)$
For all $s, s^{\prime} \in S$ and $t, t \in T$.
As of the last notation on the semigroups we follow [3, 4, 7, 8, 11]. The preliminaries on the semigroup theory may be found in [7, 8]. For detailed information on the semigroup (or monoid) presentations one may consult [3, 4, 11]. We prefer to give a brief history on the fnitely presented semigroups and monoids. A semigroup (or monoid) S is said to be presented by a semigroup (or monoid) presentation $\langle A \mid R\rangle$ if $S=\sim A^{+} / \rho\left(o r S=\sim A^{*} / \rho\right)$ where, A is an alphabet, A^{+}is the free semigroup on $A, A^{*}=A \cup\{1\}, \rho$ is a congruence on A (or A^{*}) generated by R and $R \subseteq A^{+} \times A^{+}$(or $R \subseteq A^{*} \times A^{*}$). As usual, we will use the notations $\operatorname{Sg}(\pi)$ and $\operatorname{Mon}(\pi)$ for the semigroup and the monoid presented by the presentation $\pi=\langle A \mid R\rangle$, respectively.
Through the paper p and q are odd primes, α, β, r and s are positive numbers such that $r, s \geq 2$. Without lose of generality suppose that $p^{\alpha}<q^{\beta}$ and consider the presentation $\pi_{k, t}=\left\langle a \mid a^{k+1}=a t\right\rangle$
. Let $T_{1}=\operatorname{Sg}\left(\pi_{p} \alpha_{, r}\right)=\langle a\rangle, T_{2}=\operatorname{Sg}\left(\pi_{q} \alpha_{, s}\right)=\langle b\rangle$ and $\mathrm{S}=T_{1} \rtimes \phi T_{2}$. As a preliminary result on the semigroups we get:
Lemma 1.1. For every positive integer k the relators $a^{k p \alpha}=a^{k(r-1)}$ and $a^{p k \alpha}=a^{(r-1) k}$ hold in the semigroup T_{1}. Moreover, the group End (T_{1}) possesses an involution element.
Proof. Consider the relator $a^{p a+1}=a^{r}$. Since $a^{p \alpha}=a^{p a+1-1}=a^{r-1}$ then both of the- relators hold for $k=1$. Now, by an induction method on k and using the induction hypothesis we get:

$$
\begin{aligned}
a^{(k+1) p^{\alpha}} & =a^{k p^{\alpha}} \cdot a^{p^{\alpha}} \\
& =a^{k(r-1)} \cdot a^{p^{\alpha}} \\
& =a^{k(r-1)} \cdot a^{r-1}=a^{(k+1)(r-1)}
\end{aligned}
$$

and

$$
\begin{aligned}
a^{p^{(k+1) \alpha}} & =a^{p^{k \alpha+\alpha}} \\
& =\left(a^{p^{k \alpha}}\right) p^{\alpha}=\left(a^{(r-1)^{k}}\right) p^{\alpha} \\
& =\left(a^{p^{\alpha}}\right)^{(r-1)^{k}}=\left(a^{r-1}\right)^{(r-1)^{k}}=a^{(r-1)^{k+1}}
\end{aligned}
$$

To complete the proof we may defne the homomorphism $\theta \in \operatorname{End}\left(T_{1}\right)$ by $\theta(a)=a^{p \alpha-r}$ Then,

$$
\begin{aligned}
\theta^{2}(a) & =\theta\left(a^{p^{\alpha}-r}\right)=a^{\left(p^{\alpha}-r\right)^{2}}=a^{p^{\alpha}\left(p^{\alpha}-2 r\right)+r^{2}} \\
& =a^{\left(p^{\alpha}-2 r\right)(r-1)+r^{2}}=a^{(r-1) p^{\alpha}-2 r^{2}+2 r+r^{2}}=a^{(r-1)^{2}-r^{2}+2 r}=a \\
\theta^{3}(a) & =\theta(a)=a^{p^{\alpha}-r}=\theta(a)
\end{aligned}
$$

Consequently, $\theta^{3}=\theta$.
By this endomorphism we may define the mapping $\phi: T_{2} \rightarrow \operatorname{End}\left(T_{1}\right)$ as follows.

$$
\phi_{b^{j}}\left(a^{i}\right)= \begin{cases}\theta\left(a^{i}\right) & \text { if } j \text { is odd }, \\ a^{i}, & \text { otherwise }\end{cases}
$$

for every values of i and j where, $1 \leq i \leq p^{\alpha}$ and $1 \leq j \leq q^{\beta}$. The equation $\phi\left(b^{j} b^{\prime \prime}\right)=\phi\left(b^{j}\right) \phi\left(b^{\prime}\right)$ may be proved by considering four possible cases for j and j^{\prime}. Then, ϕ is a semigroup homomorphism.
This definition makes possible to formulate the multiplication on the semigroup $S=T_{1} \rtimes \phi T_{2}$ as follows:
$\left(a^{i}, b^{j}\right)\left(a^{k}, b^{l}\right)= \begin{cases}\left(a^{i+\left(p^{\alpha}-r\right) k}, b^{j+l}\right) & \text { if } j \text { is odd }, \\ \left(a^{i+k}, b^{j+l}\right), & \text { otherwise } .\end{cases}$
Every element of S may be presented explicitly in terms of the elements $x=(a, b), A i=\left(a^{i}, b\right), B_{j}=\left(a, b^{j}\right),\left(i=2,3, \ldots, p^{\alpha}\right),\left(j=2,3, \ldots, q^{\beta}\right)$
Indeed,
Lemma 1.2. If $X=\left\{x, A_{i}, B_{i} \mid 2 \leq i \leq p^{\alpha}, 2 \leq j \leq q^{\beta}\right\}$ then X generates S.
Proof. It is suffcient to show that every element $\left(a^{i}, b^{j}\right)$ may be rewritten as a product of the elements of X, for every i and j when $2 \leq i \leq \alpha p^{\alpha}$ and $2 \leq j \leq \beta q^{\beta}$. Indeed, by the defined multiplication on S and by considering the relators $a^{p+1}=a^{r}$ and $b^{q+1}=b^{s}$ of the semigroups T_{1} and T_{2}, we get:

$$
A_{i+1} B_{j-1}=\left(a^{i+1}, b\right)\left(a, b^{j-1}\right)=\left(a^{i+1+\left(p^{\alpha}-r\right)}, b^{j}\right)=\left(a^{p^{\alpha}+1+i-r}, b^{j}\right)=\left(a^{i}, b^{j}\right) .
$$

Also, the following key lemma gives us useful information of the powers of elements of the semigroup S. These information could be applicable in study of the power graph of S.

$A_{i}^{2 k}=\left(a^{p^{\alpha}-r+1}, b^{2 k}\right), a n d A_{i}^{2 k+1}=\left(a^{i}, b^{2 k+1}\right)$,
(ii). for every i and k where $2 \leq i \leq p^{\alpha}{ }_{\text {and }}{ }^{1 \leq k \leq \frac{q^{\beta-1}}{2}}$

The powers are reduced modulo $p^{\alpha}-1$.
(iii). For every i where $2 \leq i \leq q^{\beta}$.

$$
x^{i}= \begin{cases}\left(a^{p^{\alpha}-r+1}, b^{i}\right), & \text { if } i \text { is even }, \\ \left(a, b^{i}\right), & \text { if } i \text { is odd } .\end{cases}
$$

Proof. Proofs are easy by using induction methods and considering the results of Lemma 1.2.

2 The power graphs

The semigroups $T 1 ; T 2$ and S are as in the last section. First of all, we follow [5, 6] and recall two results on the power graphs of the abelian groups.

Lemma 2.1. (Theorem 2,12 of [5]). For a finite group $G, P(G)$ is complete if and only if G is the cyclic group of order of a prime.

Lemma 2.2. (Theorem 5 of [6]). G is a finite group of order $p_{1} q_{1}$ where p_{1} and q_{1} are primes and $p_{1}>q_{1}$. Then,
(i). G is cyclic if and only if $P(G) \simeq\left(K_{p 1}-1 \cup K_{q 1}-1\right)+K_{\phi(p 1 q 1)+1,}$, ϕ is the well-known Eulerian function).
(ii). G is not cyclic if and only if $P(G) \simeq K_{1}+\left(p K_{q 1}-1 \cup K_{p 1}-1\right)$.

Proposition 1. For every positive integer α and an odd prime p let T_{1} be the non- group monogenic semigroup presented by the presentation $\left\langle a \mid a^{p \alpha+1=a}\right\rangle$. Then, $P\left(T_{1}\right) \simeq K_{p} \alpha$ if and only if $p^{\alpha}-1$ is a power of a prime or is a product of two different primes.

Proof. Suppose that the graph $P(T)$ is a complete and n is not a power of a prime. Then there exist at least two different primes p_{1} and p_{2} dividing n. So, $c^{p 1}$ and $c^{p 2}$ as the vertices of $P(T)$ are adjacent. This means that for some positive integers k and $k^{\prime}, c^{p 2}=c^{k p 1}$ or $c^{p 1}=c^{k^{\prime} p 2}$. By using he results of Lemma 1.1 the relator $a^{n+1}=a^{t}$ yields the relator $a^{k(n+1-t)}=a^{n+1-t}$, for every integer $k \geq 2$. Now, in the case when $c^{p 2}=c^{k p 1}$ we get the equation $p_{2}=p_{1}+(n-t+1)$. Hence, p_{2} divides $p_{1}-t+1$, i.e.; $p_{1}-t+1=t_{1} p_{2}$, for some positive integer t_{1}. Eliminating p_{1} in
$\left\{\begin{array}{l}p_{2}=p_{1}+n-t+1 \\ p_{1}-t+1=t_{1} p_{2}\end{array}\right.$

Gives us the contradiction $p_{2}=n+t_{1} p_{2}>p_{2}$. A similar contradiction occurs when $c^{p 1}=c^{k^{\prime} p 2}$.
Consequently, n is as a power of a prime. Conversely, every element $a^{i},(i \geq 2)$ of the semigroup $T_{1}=\left\{a, a^{2}, \ldots, a^{p} \alpha\right\}$ as a vertex of $P\left(T_{1}\right)$ is adjacent with the vertex αa. Moreover, $G=\left\{a^{2}, \ldots, a^{p a}\right\}$ is a cyclic subgroup of T_{1} with the identity element $e=a^{p-1}$. This group may be generated by $c=a^{p \alpha}$, for,
$c^{i}=a^{i p^{\alpha}}=a^{i(2-1)}=a^{i}$. $($ by Lemma1.1 and setting $r=2)$
For every $i=2,3, \ldots, p^{\alpha}-1$. Suppose that $p^{\alpha}-1$ is a power of a prime p_{0}, since p is odd then $p_{0}=$ 2. Hence, by the Lemma 2.1, $P(G)$ is complete and then $P\left(T_{1}\right)$ is so.

In the case when $p^{\alpha}-1$ is a product of two different primes, a same proof may be given by by using the Lemma 2.2 , because G is a cyclic group.

In this proposition we studied the power graph of the semigroup T_{1} when $r=2$. When $r \geq 3$, the power graph of the corresponding subgroup may or may not be cyclic. Hence, the above lemmas on the power graphs of finite groups are not applicable to study of the power graphs of semigroups. In the following proposition we study the case $r \geq 3$ and show that the abelianity of the corresponding subgroup may cause the Eulerianity of the power graph of the semigroup T_{1}.

Proposition 2. For every positive integers $\alpha, r \geq 2$ and any odd prime p, the semigroup T_{1} contains a cyclic subgroup G_{1} of order $p^{\alpha}-r+1$. Moreover, if $P\left(G_{1}\right)$ is complete then $P\left(T_{1}\right)$ is Eulerian.

Proof. As well as in the last proposition, each element of the subset $\left\{a^{2}, \ldots, a^{\alpha}\right\}$ of T_{1} is a power of the element ${ }^{a} \in T_{1}$. Then, the vertex a is adjacent with all other vertices of $P\left(T_{1}\right)$. Since $a^{p} \alpha^{+1}$ $=a^{r}$ then T_{1} contains the cyclic subgroup

$$
G_{1}=\left\{a^{r}, a^{r+1}, \ldots, a^{p^{\alpha}}\right\}
$$

of order $a^{p \alpha}-r+1$. This may be proved by considering the elements $a_{1}=a^{p \alpha-r+2}$ and $c_{1}=a^{p \alpha-r+1}$. The element al generates G_{1}, for,
$a_{1}^{i}=a^{i p^{\alpha}-i r+2 i}=a^{i(r-1)} \cdot a^{2 i-i r}=a^{i r-i+2 i-i r}=a^{i}$
Where, $r \leq i \leq p^{\alpha}$. And c_{1} is the identity element of G_{1} because of the following relators:

$$
c_{1} a^{i}=a^{p^{\alpha}-r+1+i}=a^{p^{\alpha}+1} a^{i-r}=a^{r} a^{i-r}=a^{i} \quad r \leq i \leq p^{\alpha} .
$$

To complete the proof suppose that the graph $P\left(G_{1}\right)$ is complete. Then, any two vertices of $P\left(G_{1}\right)$ are adjacent. By considering the vertices $\left\{a^{2}, \ldots, a^{r-1}\right\}$ of the graph $P\left(T_{1}\right)$ we have to show that at least one vertex a^{i} of this set is adjacent with at least one vertex of $P\left(G_{1}\right)$. Consider two cases for r. For even values of r, consider the vertex a^{2} where we get $\left(a^{2}\right)^{\frac{r}{2}}=a^{r}$ So, (a^{2}) and $\left(a^{r}\right)$ are adjacent in this case, and $\left(a^{2}\right)$ is adjacent with a^{r+1} when r is odd, i.e. $\left(a^{2}\right)^{\frac{r+1}{2}}=a^{r+1}$ Consequently, the completeness of the graph $P\left(G_{1}\right)$ yields that $P\left(T_{1}\right)$ is Eulerian.

To study the power graph of the semigroup S recall the parameters p, q, r and s as well as in Section 1 where we set $r=s=2$. Our result concerning the graph $P(S)$ is:

Proposition 3. The semigroup Spossesses a unique non-abelian maximal sub group G of order $\left(p^{\alpha}-r+1\right)\left(q^{\beta}-s+1\right)$. Moreover, if $P(G)$ is complete then $P(S)$ is Eulerian.

Proof. We construct the group $G=G_{1} \rtimes G_{2}$ such that $G_{1}=\left\langle a_{1}\right\rangle$ and $G_{2}=\left\langle a_{2}\right\rangle$ where, $a_{1}=a^{p \alpha-r+1}$ and $a_{2}=b^{q} \beta^{-s+1}$. Note that the semidirect product of a group by another group is defined as similar as in the semigroups except when End will be changed to Aut. As well as in the last proposition it may be proved that $c_{1}=a^{p \alpha-r+1}$ and $c_{2}=b^{q \beta-s+1}$ are the identity elements of the groups G_{1} and G_{2}, respectively. Evidently, by letting $r=s=2, G$ is the unique maximal subgroup of the semigroup S and $S=X \cup G$. Suppose that the graph $P(G)$ is complete then, to prove that $P(S)$ is Eulerian it is sufficient to show that every element of X (as a vertex of $P(S)$) is adjacent with at least one vertex of $P(G)$ Indeed, Lemma 1:3-(i) yields,

$$
A_{i}^{2}=\left(a^{p^{\alpha}-r+1}, b^{2}\right), \quad\left(i=2,3, \ldots, p^{\alpha}\right) .
$$

So, each A_{i} adjacent with $\left(a^{p \alpha-r+1, b 2)}\right.$. Also, the part (ii) of the same lemma gives us

3Conclusion

The corresponding maximal subgroup G of the semigroup S where $r=s=2$, is a non-abelian group of order $\left(p^{\alpha}-1\right)\left(q^{\beta}-1\right)$. During the following examples we examine certain subclasses of S to determine related behaviours of the power graphs of S and G.

References

[1] F. Baccelli, G. Cohen, G. J. Olsder, J. P. Quadrat, Synchronization and linearity: an algebra for discrete event systems, (1992)
[2] P.J. Cameron and S. Ghosh, The power graph of a nite group, Discrete Math. 311 (2011), 1220-1222.
[3] C.M. Campbell, J.D. Mitchell and N. Ruskuc, Semigroup and monoid presentations for nite monoids, Monatsh Math. 134 (2002), 287-293.
[4] C.M. Campbell, E.F. Robertson, N. Ruskuc and R.M. Thomas, Semigroup and group presentations, Bull. London Math. Soc. 27 (1995), 46-50.
[5] I. Chakrabarty, S. Ghosh and M.K. Sen, Undirected power graphs of semigroups, Semigroup Forum 78 (2009), 410-426.
[6] T.T. Chelvam and M. Sattanathan, Power graphs of fnite abelian groups, Algebra and Discrete math. 16 (2013), 33-41.
[7] N.H. Cliford, G.B. Preston, The algebraic theory of semigroups. Vol. I. Amer. Math. Soc. Surveys 7, Providence, R.I. 1961.
[8] J.M. Howie, Fundamentals of semigroup theory, London Math. Soc. Monographs, Oxford, 1995.
[9] A.V. Kelarev and S.J. Quinn, A combinatorial property and power graphs of groups, Contrib. General Algebra 12 (2000), 229-235.
[10]G.B. Preston, Semidirect product of semigroups, Proc. Royal Soc. Edinburgh, 102 (A) (1986), 91-102.
[11]E.F. Robertson, Y. Unlu, On semigroup presentations, Proc. Edinburg Math. Soc. 36 (1992), 55-68.
[12]T. Tamura, Examples of direct product of semigroups or groupoids, Notices of the American Math. Soc. 8 (1961), 419-422.

