
 

Journal of Data Acquisition and Processing Vol. 38 (4) 2023      381 
 
 
 

ISSN: 1004-9037 
https://sjcjycl.cn/ 

DOI: 10.5281/zenodo.777693 
 

MATHEMATICAL MODELING OF NEURAL ACTIVITY BASED ON OPTIMAL 
REINFORCEMENT LEARNING 

 
V. Krishnan 

PG & Research Department of Mathematics, Jamal Mohamed College (Autonomous), 
Affiliated to Bharathidasan University, Tiruchirappalli -620 020, Tamilnadu, India 

Email ID: vkrishnan1987@gmail.com 

Abstract: 

The brain is a very complex persistent neural network. The Reinforcement Learning (RL) 
theory has become one such approach applied in studies of brain-and-machine interfaces. We 
design experiment-based neural models to enable information processing system. In present 
study we proposed a well-organized learning technique, such as attention-gated (AG) 
reinforcement learning, to use a three-layer neural network to instantly understand the neuronal 
position at each time of action compilation. Three models discussed in this study had similar 
neural (firing) inputs, and similar neural network structures (nonlinear), but dissimilar policies 
to pick the weights and actions. The TARs of the three models demonstrated that attention-
gated (AG) reinforcement learning has higher TAR values as compared to Q-greedy, and Q-
softmax. The decoders begin to track the non-stationary fresh neural information every day, 
after the adaptation of one data segments, it showed better performance. Attention-gated (AG) 
reinforcement learning shows decoding ability while maintaining the performance of non-
stationary nerve activity over several days of recording. The RL-based BMI architecture is an 
effective reinforcement learning method for designing adaptive neural decoders in a 
sophisticated process space that accelerates performance and reliably improves performance in 
complex artificial control tasks. 

Key words: Neural control, Brain-machine interfaces (BMIs); Trajectory tracking; Attention-
gated reinforcement learning 

Introduction: 

The brain is a very complex persistent neural network. In contrast, the information-processing 
paradigms that dominate computational neuroscience are shallow structures that perform 
simple mathematical operations. In neuroscience, the model describes how the nervous system 
is physically organized and/or how its function changes dynamically over time. The 
Reinforcement Learning (RL) theory has become one such approach applied in studies of brain-
and-machine interfaces (BMI). Prior knowledge of the environment model influences the RL 
system to operate in an unrestricted environment. Empowerment learning (EL) is a process of 
adaptive nature that uses animal models to explore past experiences to develop the outcome of 
future options. Chavarriaga and Millán used errors (ErrP) linked to EEG capabilities that were 
developed as reward signals to reduce the risk of a defect [1]. Digiovanna was the first to 
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discover the experimental RL-based BMI model in which mice were trained to control the brain 
with an artificial arm in two targeted options using Q (λ) Learning [2]. Sanchez Q (λ) cautioned 
against expanding the co-adaptive architecture of Primate Testbed, which performs an egress 
center task [3]. However, these studies simplify decoding motions into which classification 
arrives within an experiment. Kaelbling et al. in his study discussed three models based on how 
the reward for optimism is considered [4]. We design experiment-based neural models to 
enable information processing system. In present study we propose a well-organized learning 
technique, attention-gated (AG) reinforcement learning, to use a three-layer network of neural 
to instantly understand the neural location at every time index into a rich action compilation. 

Reinforcement Learning Theories:  

Mathematical modeling of reinforcement learning (RL) plays a crucial role in the budding 
fields of Neurotechnology. Prior studies demonstrated RL as the “Markov Decision Process” 
(MDP) with “Q-Learning” process. This is explained by a fixed set of states (St), actions (Ac); 
and a transition function (Tr) which allocated to every state and action pair a possibility 
distribution over the state, and reward functions (Rw).  

Tr(Tr: St ×Ac → Π (St)) 

Rw(Rw: St×Ac → Rw) 

In line with the theories, the Markov Q-Learning algorithm combines the possibility of the Q-
learning algorithm with the maximum action value Q* to model the decision-making process 
for consistent learning difficulty. Make a map accordingly and, more precisely, a Q-study 
computes a list of all values, called the Q-Stable, a constant estimate of Q(St, Ac). Q (St, A) is 
defined as a prediction under the hypothesis that agents execute activity among state, and then 
the activities that are most rewarding are always selected. Each function pair, Q(St, Ac) is 
started with arbitrary value  and then reorganized at every steps t(t > 0), the action (at) executed 
in state (st) according to the following equation: 

),(),(max(),(),( 111111   tttAatttt asQasQasQasQ      (1) 

The term β is the learning rate 1>δ>0; γ was the discount factor that influence how many 
rewards are counted; RW is the reward gained for action performing at−1 in state st-1; st is the 
state meet after performing action at−1 in st-1. Q-learning process is straightforward to execute 
however it is impracticable for problems of attention since the dimension of the Q-table 
(|S|×|A|) go up rapidly for problem sampling, thus, require oversimplification of the process. 
The study learning performance is measured using three main dimensions: (i) ultimate 
convergence to optimal- many algorithms come with a guarantee of asymptomatic conversion 
for optimal behavior, (ii) Rate of conversion with optimality - the closest maximum completion 
speed, rather than good behavior from the start, is the expected reduction in the reward of 
implementing a learning algorithm that errors occur somewhere during the race. 
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Figure 1: Reinforcement Learning model, ST= state; RW =Reward; A=Action 

1. Model-based reinforcement learning: Several reinforcement learning (RL) 
techniques adopted from the default global model. Model-based RL understand the 
uncertainty of the sequence of events and activities in a task (resulting in the processes 
that follow, e.g., different paths in a given way) which could be use dynamically and 
adaptively to decide perfect activities by simulating their events of consequences. The 
model-based approach first used the calculation transfer (p) and cost functions (c) and 
used them to calculate the value (v). In contrast, a model-free approach can formulate 
responses regardless of the transfer activity or reward function. 

2. Value-based: In this architecture, the decision-maker maintains reasonable value 
estimates starting in each state in the environment, and updates those estimates when 
they have a new experience. The maximum value is calculated by repeating the value. 
Any such algorithm has been shown to better integrate into the maximum value 
estimation, which can be used to generate maximum behavior. Technically, value-
based RL can be applied to model-based RL. Convergence theory is very important 
when using value function based RL. Asynchronous dynamic programming integrates 
into the maximum value function. Value-based model could be restructured based on 
the various forms of information and data. They adjust information based on the penalty 
or reward collected by the subjects after every action. Value-based RL will be not 
change, so there is no need for learning if current selection actions always accurately 
predict current function values. Or else, current function values should be customized 
to reduce errors in reward predictions. The signature difference between the actual 
reward and expected reward by the current value functions and is called the error of the 
reward prediction. Error of reward prediction is the main way of changing class 
reinforcement learning algorithms and value functions, which is called learning simple 
or model-free empowerment. Specifically, the value activity of the animal activity or 
action is upgraded on the basis of the error of the prediction, while the activity values 
for all the actions and states remains unaffected or remains inactive. 

3. Policy-based: A policy is applied for function estimate. The policy is a greedy policy 
like neural network, for example actor-critic model. In value-based model, a minute 
variation in value can influence action selected. However, this is not the case in greedy 
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policy. Apart from these, in off-policy model, an agent cannot pick actions and learns 
from experts and sessions (recorded data). Dual Q-learning process is an off-policy 
reinforcing learning algorithm where another policy is used for evaluation rather than 
selecting the next action. In practice, two different value functions are performed in 
parallel with each other using specific experiments. 

Experimental Setup in a RL Diagram  

In present study, we planned to approve an competent reinforcement learning system for neural 
study, for instant attention-gated (AG) reinforcement learning that used to utilize a multi-layer 
neural network to instantly infer the neural activities arrived at every time into a affluent action 
assembly. Attention-gated reinforcement learning approach learns the efficient mapping from 
the communication on the basis of an instant reward other than the actual movements, which 
is clinically obtainable to the brain-and-machine interfaces (BMI). The neural system facilitate 
a easy-coding to discover sequential actions based on the probability system, also describe as 
rigorous function value according to the prediction error to strengthen the learning system by 
evaluating the unpredicted rewards, which add value to improve performance [2]. To test the 
competence and efficacy of the proposed method, we compare attention-gated (AG) 
reinforcement learning against Q-learning process with “α-greedy policy” (Q-greedy) 
implementation and policy of softmax for decoding accuracy, stability and convergence. All 
these models are useful to rebuild the path of a real brain-and-machine interfaces task with 
neural data, and additionally confirmed the adaptively based on multiple days’s observation 
and recording.  

We used attention-gated reinforcement learning to predict the path straightly from the recorded 
neural data. The neural data were collected from experimental setup. According to the 
characteristics of the path recorded in the brain-and-machine interfaces (BMI) task, the two 
dimensional behavioral data were clustered into seven actions, (left, right, up, down, Y axis 
position holding, X axis position holding and resting). The two holdings in X and Y directions 
were corresponding to the reflex actions. The direction of the neural actions in the accordance 
with neural states is accomplished by a three-layer neural network [5].  

The unseen layer uses sigmoidal nonlinear functions. The output of the unseen layer, Zk is 
express as: 

kZ = 
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Here, yik is the weights; ‘n’ is no. of the input nodes; unseen layer surrounds a bias value: Z0=1. 
Function states of path direct the no. of the output nodes. For every output node Wj responds 
to diverse actions. AG reinforcement learning approves the softmax stochastic rule to evaluate 
the neural activity. The prediction of choosing action is express as: 
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Here, gkj the weight, whereas m is the no. of nodes in the unseen layer, that evaluated by 
exchanging computational values and the model performance. For Q-learning compare and 
implement two policies such as “Q-greedy” and “Q-softmax” [2]. However, all of the methods 
have similar neural system (nonlinear network), neural firing inputs, and the similar action 
ensemble productivity, however dissimilar policies to pick the errors and action. The ‘Q-greedy 
policy’ expressed as follow: 
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Where, ε = 0.01. The actions having maximum Q-value is selected with likelihood (1-ε). For 
Q-softmax, the activities are chosen based on the probability systems of the neural network. 
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Where, ψ is the temperature parameter, here ψ=0.05 
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Where, XPr(t)=X(1) and Ypr(t)=Y(1), are the primary point of real trajectories on the direction 
of X and Y. 

The network weights, Yik & gkj, were initiated arbitrarily between -0.1 to +0.1, and then adjusted 
until the error predictions meet to maximize reward signal. After the system obtains an instant 
reward, AG reinforcement learning represent a universal error signal which is computed as 
below: 

t   1)1(1)((2  trtWcRo         (8) 

Where, ‘c’ represent winning unit. Q-learning was used to evaluate the error using eligibility 
trace, λ: 
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Where, δ is the learning rates. For Q-learning, the network is taking the chronological 
dissimilarity error. The performance of brain-and-machine interfaces decoders is determined 
with the mean square error (MSE) and correlation coefficient (CC) between the actual and the 
predicted paths, which are extensively used in. Target acquisition rate (TAR) is utilized to 
evaluate skill of the decoders which understand patterns of the firing neural assembly to the 
projection activities [6, 7].  

RESULTS 

Attention reinforcement learning is used to evaluate the successive actions from actual neuron 
firing rates. The two dimensional data of behavior are assemble into seven activities or actions, 
(up-down, left-right, X and Y axis position holding, and resting). Each time neural activity is 
decoded immediately in an action or activity, and reward is determined according to the relative 
distance of the current to the concave crease position. The load is started arbitrarily at each 
stage and is upgraded regularly. After gaining weight at the end of the opening day, then set 
them as the initial values of the data class entered in the following days and keep updating. If 
the MSE is below the usual average of 0.1 with the desired path strength, detection is 
considered consistent. 

Day 1 consists of four data classes and two data classes lasting 40 minutes in 2 days, 3 days 
and 6 days 20 minutes, respectively. We investigated the genetic parameters to evaluate the 
optimal combination of RL and Q-Learning (Q-Softmax, Q-Greed). The parameters were 
selected according to the correctness of the average performance selection to confirm the data 
in 50 convergent organizations. Note that the Q- learning indicates a delayed return only when 
each test is completed, but each time we decode the immediate motion [8, 9].  

Study of the function of the brain and machine interfaces (BMI), we depicted the 
transformation process to describe how all the three models compute the neural tracking task. 
Q-learning and AG reinforcement learning decoders may not be able to perform the task at the 
start of the learning phase due to arbitrary initializations. In contrast, attention-gated (AG) 
reinforcement learning is able to shift to accurate directional from the holding or latent action 
timely, as learning can be intensified with unpredicted rewards. In final state of learning phase, 
all these methods learn to define neural positions for accurate actions, but Q-greedy processes 
still have limited amplitude of path rebuilding. 

We found transition between the values of the output activities, which indicating that the 
weights develop to set in the input systems and the correct action learn policy. The sequential 
multi-units’ actions of Channels that modulate signal variation for RIGHT,  LEFT, UP and 
DOWN activities independently throughout 5 days. Table 1 lists the average target acquisition 
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rates (TAR) in 5 days for the corresponding actions. AG reinforcement learning beat two other 
decoders models at all commands represented by the right-tail paired t-test at p-value 0.05 
significant level (AG reinforcement learning against Q-greedy: p= 0.010, and for AG 
reinforcement learning against Q-softmax: p= 0.0211). 

Table 1: The mean of the target acquisition rates (TAR) of prediction movement in all the three 
models such as AG reinforcement learning, Q-greedy, and Q-softmax  

 RIGHT LEFT 

Reinforcement learning 0.8528±0.1928 0.8989±0.1508 

Q-greedy  0.5583±0.3109 0.7832±0.3255 

Q-softmax 0.7705±0.0773 0.8159±0.1257 

 UP DOWN 

Reinforcement learning 0.5193±0.2377 0.7596±0.1564 

Q-greedy   0.7985±0.0987 0.8183±0.1560 

Q-softmax 0.8418±0.1899 0.8943±0.0859 
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Figure 1: The TAR of prediction movement among the Reinforcement learning, Q-greedy, & 
Q-softmax  

We recorded performance of the all three decoders data during all 5 day’s setting. The values 
of the decoders found by the close of the earlier day are set as the starting values in the 
subsequent data sections and carry on updating process. The means and standard derivations 
were determined for Reinforcement learning, Q-greedy, and Q-softmax throughout 60 
convergent initializations. Among all the models reinforcement learning was showing the best 
convergence and least initial effects. The compassion to the Q-learning initialization may 
outcome from the sequential variation between two consecutive assessments and total of 
predictions gradients. The data required for parameters upgrade of Reinforcement learning is 
available locally, that make reinforcement learning less reliant on the starting conditions and 
more competent. The standard correctness of X and Y axis by reinforcement learning enhance 
quickly than those of Q-softmax and Q-greedy representing the quicker convergence in neural 
learning. In this study we found that performance of decoding falls slightly at the initial phase 
of every five days of the experiments, but not like first day. Every decoder need less data 
segments (up to 3) to converge to high-quality performance in subsequent days. The average 
TAR achieved by Q-greedy, Q-softmax and AG Reinforcement learning throughout all 5 days 
demonstrated that attention-gated (AG) reinforcement learning has higher TAR values as 
compared to Q-greedy, and Q-softmax. The decoders begin to go after the movable form of the 
latest neural data for daily update and provide good performance after every adaptation of data 
segments.  

Discussion and Conclusion: 

Attention-gated (AG) Reinforcement learning represent model-based and flexible 
reinforcement learning, where we can altered value functions. These algorithms can control the 
value functions on the basis of the movement state of animals and its information of the 
surroundings without direct penalty or reward. Prior study demonstrated that animal can 
quickly change their behavior according to their current incentive status after the value of 
certain foods is reduced. It is often used as a test of goal-oriented behavior and implies that 
animals are indeed able to model-based flexible learning. Humans can also mimic the outcome 
of possible actions they can choose. This is known as paradoxical thinking, and the value of 
imaginative outcomes can be incorporated into the value functions by unselected measures 
when the results are predicted by the current value function. The difference between a 
hypothetical and a resultant error equal to an error is called a mythic or counter-prediction 
error. 

To examine the benefits of AG reinforcement learning over other learning models, we unite Q-
learning with softmax decision rule, and performed a comparison analysis of the three models 
(AG reinforcement learning, Q-greedy, and Q-softmax). All models combine the same neural 
firing input, the identical non-linear neural network configuration, and similar actions and 
functions ensemble but share different principles for choosing the rules for upgrading weights 
and actions. We found the similar phenomenon where learning is easily biased when a 
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particular action gives the highest reward in the early stages of Q-greedy [10]. However this 
bias can be removed by reinforcement learning on constantly choosing the accurate actions, it 
need more time for decoder to learn a new accurate action, which may lead to slow down 
performance. When we did comparison analysis, AG reinforcement learning approves a 
softmax policy to pick the activities based on the probability allocation of every possible action. 
Although the best actions are not possible to selected, the sub-optimal actions can be selected 
with a higher probability than the others, which helps to prevent sudden changes in 
performance. To additionally validate the benefits of the Softmax policy, we integrate Q-
learning and focus on improving the effectiveness of decoding. However, attention-gated (AG) 
reinforcement learning still outshines Q-Softmax in term of TAR values, since attention-gated 
(AG) reinforcement learning also can evaluate a global error; it is actually calculated by 
dopamine neurons [5, 11, 12]. Extensive action defined with global error intensifies the 
reinforcement learning by evaluating unexpected rewards that contributes to the improvement 
of attention-gated (AG) reinforcement learning performance. For the above two reasons, 
attention-gated (AG) reinforcement learning demonstrates the ability to decode by maintaining 
movable neural activity after a number of days of recording. Attention-gated (AG) 
reinforcement learning based BMI design is a sophisticated process to design an adaptive 
neural decoder adapted to the space, an efficient reinforcement learning technique that 
accelerates implementation and consistently enhances performance in multifaceted artificial 
control functions. 

It may be recognized that attention-gated (AG) reinforcement learning requires exploring a 
larger state-of-the-art space to collect appropriate mapping that is less successful than learning 
to supervise. Existing reinforcement learning methods adapt to the brain environment, resulting 
in neural activity. While the animal experimental model is doing the BMI task, the decoder is 
learning parallel to the brain function to output the accurate action to perform the task instantly. 
In future study the brain and machine interfaces (BMI) will observe the robotic arm without 
actual limbs, which imposes more dynamics of brain activity than everyday alteration. This 
challenge can be solved by optimistic attention-gated (AG) reinforcement learning and 
sophisticated RL algorithms as the decoder continue to update model-parameters based on trial-
and-error method. Furthermore, neural activity adaptation can be modeled to predict future 
neural conditions and environmental dynamics can be used to improve the proficiency of brain 
and machine interfaces (BMI) applications. 
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