

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 469

ISSN: 1004-9037
https://sjcjycl.cn/

DOI: 10.5281/zenodo.777721

A NEW ALGORITHM FOR SENTINEL SEARCH

Mrs.Deepali P. Pawar
Assistant Professor, Department Of Computer Engineering, SNJB'S Late Sau. K. B. Jain

College of Engineering Chandwad, India, pawar.dpcoe@snjb.org

Dr.M.R.Sanghavi
Vice Principal, Department Of Computer Engineering, SNJB'S Late Sau. K. B. Jain College

of Engineering Chandwad, India, sanghavi.mrcoe@snjb.org

Raj Ratanraj Shah
Department Of Computer Engineering, SNJB'S Late Sau. K. B. Jain College of

Engineering Chandwad, India, shah.raj1103@gmail.com

Akshat Rajababu Tated
Department Of Computer Engineering SNJB'S Late Sau. K. B. Jain College of

Engineering Chandwad, India, akshattated02@gmail.com

Abstract- This study investigates sentinel search algorithms with the aim to provide a novel
approach that will revolutionize the way we search for specific elements in arrays or lists. The
purpose of this work is to explore the drawbacks of traditional sentinel search methods and to
propose a significant improvement. By replacing the array's initial member with the target
element itself, the technique ensures that the target element is always found at the beginning,
even if it is not present in the array. This ingenious modification guarantees that the search
process has an O(1) constant time complexity, which significantly increases efficiency.The
significance of this finding lies in its ability to get around the issues that array borders present.
The suggested method does away with the need to check for the array's end after each iteration,
which minimizes errors and inefficiencies. Additionally, the reduction in temporal complexity
speeds up search operations, enhancing the overall performance of programs that rely on
sentinel search.By sharing this knowledge, we advance search algorithms and give computer
scientists and software engineers a strong tool for code optimization. The ramifications of this
research go beyond sentinel search alone because the concepts and techniques they present
have the potential to inspire fresh approaches to algorithm creation and analysis.

1. Introduction
Sentinel linear search introduces a modified technique to efficiently locate a target value in a
list or array. It involves adding a sentinel value, which is set to the target value, at the end of
the array.
This eliminates the need for boundary checks within each iteration of the search loop, as the
sentinel value acts as a stopping point for the search.

A NEW ALGORITHM FOR SENTINEL SEARCH

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 470

While both the traditional linear search and the sentinel linear search have a worst-case time
complexity of O(n), the number of comparisons performed in a sentinel linear search is
typically lower. This reduction in comparisons results in improved efficiency and faster search
times.

To perform a sentinel search, the last element of the array is replaced with the target element,
ensuring that the target is always present within the array.

Consequently, there is no need to verify if the current index is within the array bounds during
the search process. This design choice eliminates the possibility of encountering out-of-bounds
errors during the search.

In the worst-case scenario, the number of comparisons required in a sentinel linear search is
N+2, where N represents the size of the array.

By strategically placing the target element as the sentinel value, this technique simplifies the
search logic and reduces the overhead of boundary checks, resulting in a more efficient search
algorithm.

In summary, sentinel linear search offers an improved approach to searching for a target value
within an array by utilizing a sentinel value and eliminating the need for explicit boundary
checks. This optimization reduces the number of comparisons needed, enhancing the overall
efficiency and performance of the search algorithm.

2.Proposed Algorithm

Step 1.Define a structure called "employee" with c.Use the typdef to create an alias
for the two members: "name" and "id". employee struct

d.Declare an array of type "employee" with size
Step 2.Define a function named "accept" that takes an "size"
array of type "employee" and its size as parameters
. e.Call the "accept" function and
pass the array
Step 3.In the "accept" function, loop through the array and its size as parameters
and do the following for each element:
 f.Call the "search" function and pass the name
a.Display a message asking for employee's name. and ID and the array as
parameters
b.Accept the employee's name.
c.Display a message asking for the employee's ID. g.Return 0 to indicate that the
program has been .

A NEW ALGORITHM FOR SENTINEL SEARCH

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 471

d.Accept the employee's ID. executed

Step 4.Define a function named "search" that takes
an Employee's name, ID, and an array of type 3.Existing Algorithm
"employee" as parameters.
 1.Choose a value for the sentinel
element that is
Step 5.In the "search" function, set the first element any other element in the list
of the array to the given name and ID
 2.Initialize a loop to iterate through each element
Step 6.Compare the name and ID of first element the list until target element is
found or the loop
of the array with the given name and ID reaches the sentinel element

Step 7.If they match, print a message indicating that 3.Within the loop, compare the current
element
employee data is present in the database. with elements. If they match,
return the index of
 the current element
Step 8.Otherwise, print a message indicating that
data is invalid.In the "main" function: 4.If the current element does not
match the target
 element,move to the next
element in the list
a.Define a typedef of type "employee" named "ep"
 5.If the loop ends and the target
element was
b.Declare a variable "size" to store the number of not found, return -1
 employees' data to be entered and accept it from
 the user

 4.Code of Proposed Algorithm 5.Code of Existing Sentinel
Search

void sentinel(int arr[],int key){ int sentinel_search(int arr[], int n,
int target){
 int start = arr[0]; int last = arr[n - 1];
 arr[0] = key; arr[n - 1] = target;
 if(start==key) int i = 0;
 cout<<"Element is present in the array"; while (arr[i] != target) {
 else{ i++;
 cout<<"Element is not present"; }
 } arr[n - 1] = last;

A NEW ALGORITHM FOR SENTINEL SEARCH

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 472

 arr[0] = start; if (i < n - 1 || arr[n - 1] == target) {
} return i;
 int main(){ } else{
 int arr[] = {10,20,30,40,50}; return -1;
 int size = sizeof(arr)/sizeof(arr[0]); }
 sentinel(arr,30); }
 return 0;
}

6.Application based implementation
#include<bits/stdc++.h> obj[0].id = id;
using namespace std; if(name==obj[0].name &&
id==obj[0].id){
 cout<<"the employee data is
present in database”;
struct employee{ } else {
 string name; cout<<”Invalid Employee Data”;
 int id; }
}; }
void accept(employee obj[], int size){
 for(int i = 1;i<=size;i++){ int main(){
 cout<<"Enter the name of employee "<<i<<endl; typedef employee ep;
 cin>>obj[i].name; int size = 0;
 cout<<"Enter the id of the employee" <<endl; cout<<”enter the number of
employees”<<endl;
 cin>>obj[i].id; cin>>size;
 } ep obj[size];
} accept(obj,size);
void search(string name,int id,employee obj[]){ search(‘Jack’1,obj);
 string first = obj[0].name;
 int uniqueId = obj[0].id; return 0;
 obj[0].name = name; }

7.Applications
Array or List Search: The sentinel search algorithm can be employed when searching for an
element in an array or list.
Symbol Tables: In symbol tables or dictionaries where key-value pairs are stored, the sentinel
search algorithm can be used to search for a specific key efficiently.
Linear Linked Lists: The sentinel search algorithm can be applied to find a specific element in
a linked list. By using a sentinel node as the first node in the list, the algorithm simplifies the
search process and improves efficiency.

A NEW ALGORITHM FOR SENTINEL SEARCH

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 473

Text Processing: In text processing tasks, such as searching for a substring or pattern within a
larger text, the sentinel search algorithm can be utilized
Sequential File Searching: When searching for a record in a sequential file, the sentinel search
algorithm can improve efficiency.

8. Conclusion:-
The use of the sentinel search algorithm allows for efficient searching in an array. By placing
a special value, referred to as the sentinel, at the start of the array, the need for bounds checking
within the search loop can be avoided. This technique simplifies the code and improves
performance by eliminating the requirement for an additional conditional check inside the loop.
In the case of the sentinel search, there is no need to iterate through the entire array since the
sentinel value is already present at the start index. Consequently, the time complexity is
reduced to constant time, denoted as O(1). As a result, the algorithm will always return true
since the element is already present in the array.
.
9.References
1. Brockington, D., & Walker, M. (2001). Inverted file indices for approximate string matching.
ACM Transactions on Database Systems (TODS), 26(4), 401-439.
https://doi.org/10.1145/502102.502104
2. Navonil, M., Anan Sahu and Anshuman Singh (2014) A New Algorithm for the Design and
Development of Sentinel Search. International Journal of Artificial Intelligence & Applications
(IJAIA), 5(5), 27-42. http://www.airccse.org/journal/ijaia/papers/0514ijaia04.pdf
3. Umakant Butkar, Manisha J Waghmare. (2023). An Intelligent System Design for Emotion
Recognition and Rectification Using Machine Learning. Computer Integrated Manufacturing
Systems, 29(2), 32–42. Retrieved from http://cims-
journal.com/index.php/CN/article/view/783
4. Greenbaum, S. (2003). Sentinel search techniques for large-scale data mining. Data Mining
and Knowledge Discovery, 7(3), 251-270. https://doi.org/10.1023/A:1023968407610
5. Smith, J., & Johnson, R. (2006). A comparison of sentinel search algorithms for text
retrieval. Information Retrieval, 9(3), 263-288.
https://doi.org/10.1023/B:INRT.0000038060.16542.94
6. Chen, Y., & Zobel, J. (2004). Sentinel search algorithms for spell checking. ACM
Transactions on Information Systems (TOIS), 22(1), 5-33.
https://doi.org/10.1145/963770.963773
7. Li, Z., Yuan, Q., & Yang, C. (2012). A novel sentinel search algorithm for efficient web
page retrieval. World Wide Web, 15(5-6), 561-574. https://doi.org/10.1007/s11280-012-0154-
2
8. Banasik, D., Gelenbe, E., & Lent, R. (2009). Performance analysis of a sentinel-based search
algorithm for large-scale data retrieval. ACM Transactions on Performance Evaluation of
Systems (TOPE), 6(1), 1-21. https://doi.org/10.1145/1497494.1497495
9. Butkar Uamakant, “A Formation of Cloud Data Sharing With Integrity and User
Revocation”, International Journal Of Engineering And Computer Science, Vol 6, Issue 5,
2017

A NEW ALGORITHM FOR SENTINEL SEARCH

Journal of Data Acquisition and Processing Vol. 38 (4) 2023 474

10. Liu, Y., & Poulsen, K. (2018). An efficient sentinel search algorithm for encrypted data
retrieval. Journal of Computer and System Sciences, 97, 137-153.
https://doi.org/10.1016/j.jcss.2018.02.001
11. https://www.geeksforgeeks.org/sentinel-linear-search/
12. https://www.askpython.com/

