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Abstract 
Worldwide food production is being stressed by extreme weather conditions, fluctuating 
temperatures, and global affairs. With a global output of millions of tons annually, tomatoes 
stand as a pivotal staple in agricultural practices worldwide. Early-stage identification and 
classification of diseases in tomato plants can be a cost-effective measure for farmers, 
potentially reducing the need for expensive crop sprays and enhancing overall food yield. In 
the realm of disease detection and control, there is considerable potential for transformative 
impact through technological innovations. In a multitude of domains, deep learning algorithms, 
a subset of artificial intelligence, have autonomously demonstrated their recognition and 
applicability in real-life situations. This paper seeks to employ deep transfer learning for the 
classification of various distinct tomato diseases namely, bacterial spot, early blight, late blight, 
leaf mold, mosaic virus, septoria leaf spot, target spot, and yellow leaf curl virus with the 
healthy state. The approach in this work uses tomato leaf images as input, which is given to 
convolutional neural network architectures. In addition, these models utilize transfer learning 
principles from well-established deep learning networks. The assessment of performance 
involved rigorous examination through multiple data split strategies and diverse metrics. 
Moreover, to mitigate the influence of randomness, the experiments were repeated 6 times. The 
six categories were classified with mean values of 98.3% precision, 98.2% F1 score, 98.1% 
recall, and 98.4% accuracy.  
 
Introduction 
Agriculture is the lifeline of food security, catering to the production needs of both commercial 
and local sectors. Its paramount importance is highlighted for small-scale farmers, providing 
them with a key source of income in the absence of alternative employment opportunities. 
Tomatoes stand out as a sustainable choice due to their lower water and fertilizer requirements 
compared to other crops. Tomatoes, due to their nutritional richness and ubiquitous presence 
in various recipes, hold a pivotal role as a vital crop and staple food product globally [1]. 
According to the Food and Agriculture Organization (FAO), tomatoes are ranked as the sixth 
most abundant vegetable worldwide [2]. In 2021, the global production of tomatoes reached a 
staggering 189 tons in 5 million hectares area of harvestation. Despite their prominence, the 
tomato plant remains vulnerable to numerous diseases caused by bacteria, viruses, or fungi, 
directly impacting productivity.  
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Tomatoes rank among the most commonly consumed fruits globally on a daily basis. Given 
their widespread use in toppings like ketchup, sauce, and puree, tomatoes boast a high global 
utilization rate [3]. In Europe, an individual's yearly tomato consumption stands at around 
thirty-one kilograms, while in North America, this figure rises to approximately forty-two 
kilograms per person. The substantial demand for tomatoes underscores the necessity for the 
development of early detection technologies capable of identifying viruses, bacteria, and other 
contaminations [4]. Numerous studies have explored the application of artificial intelligence-
based technologies to enhance the resistance of tomato plants against diseases. The 
conventional approach to disease detection in farming involves seeking guidance from plant 
pathologists or relying on personal experience and public resources. The hurdles lie in the 
significant time investment, effort, and technical knowledge required, affecting both 
professionals and farmers. Consequently, technological solutions geared toward facilitating 
disease detection and identification have the potential to significantly reduce costs while 
improving the accuracy and speed of disease control.  
 
In this context, recent strides in artificial intelligence (AI) have unleashed a myriad of 
applications across diverse disciplines. AI systems encapsulate domain knowledge within their 
models through the intricate processes of training and validation, endowing them with decision-
making capabilities of considerable sophistication and complexity [5]. Notably, deep learning 
algorithms, and specifically convolutional neural networks (CNNs), have emerged as powerful 
tools for discerning intricate relationships and features in real-life processes, especially in direct 
image-based decision-making and object detection. Unlike traditional neural networks 
comprising input, output, and hidden layers, deep learning involves a more extensive layering 
architecture, allowing the capture of input features and details across multiple scales. Among 
the plethora of deep learning AI algorithms, convolutional neural networks stand out as 
particularly adept at processing images as input. Within a CNN, layers conduct a series of 
convolution operations using filters of varying sizes, often followed by a rectified linear unit 
(ReLU) activation function [6]. The output from the ReLU is a feature map, subsequently 
down-sampled by a pooling layer. Generally, the final layer preceding the output in a CNN is 
a fully connected layer, amalgamating diverse features learned from preceding layers and 
feeding them into the output layer. 
 
This paper presents the following key contributions: 

1. Advancing deep learning models made for diagnosing tomato plant leaf diseases 
focusing on a variety of unique diseases like early blight, mosaic virus, septoria leaf 
spot, late blight, target spot, and yellow leaf curl. 

2. Implementation of transfer learning using six deep convolutional neural network 
models to classify leaf images into ten classes.  

3. Evaluation of the performance of the various deep learning models through the use of 
multiple metrics covering various aspects of detection and classification capabilities.  

The subsequent sections of this paper are organized as follows: detailed presentations on the 
data, convolutional network models, and the setup of performance evaluation metrics. The 
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following section delves into the performance evaluation results, comparing them with related 
literature and providing a discussion on the models. The paper concludes in the final section. 
 
Literature Review 
Le et al. [7] introduced a methodology for classifying various plant leaf diseases. The initial 
step involved a pre-processing phase utilizing morphological opening and closing methods to 
eliminate unwanted information from the suspected samples. Subsequently, key points were 
extracted using the filtered local binary pattern method with contour mask and coefficient k (k-
FLBPCM). The calculated feature vector underwent training of an SVM classifier for 
classification [8]. While this approach demonstrates robustness in diagnosing plant leaf-related 
diseases with an accuracy of 98.63%, its performance diminishes when applied to distorted 
images. 
 
Similarly, a framework known as Directional Local Quinary Patterns (DLQP) was introduced 
for calculating a descriptive set of sample features, which were then utilized for SVM training. 
This technique exhibits enhanced performance in categorizing plant leaf abnormalities, 
achieving an accuracy of 97.80%. However, it shows degraded results when handling blurry 
input images. In another study, Sun et al. [9] proposed a solution for crop disease 
categorization. Initially, the input image was segmented using Simple Linear Iterative Cluster 
(SLIC) to form several blocks. Feature computation from these image blocks was conducted 
using fuzzy salient region contours and the Gray Level Co-occurrence Matrix (GLCM). The 
extracted key points vector was employed to train the SVM method for classifying various 
plant diseases [10]. Although this methodology demonstrates superior results in plant leaf 
disease recognition with an accuracy of 98.50%, it comes at the cost of high computational 
requirements. 
 
Tan et al. [11] in their research, captured images of chili plant leaves and employed a processing 
technique to determine the health status of the chili plant, ensuring targeted application of 
chemicals to diseased plants. Their approach utilized MATLAB for feature extraction and 
image recognition. Pre-processing steps involved Fourier filtering, edge detection, and 
morphological operations. The integration of computer vision expanded the image processing 
paradigm for object classification, employing a digital camera for image capture [12]. 
 
In a related study, Badnakhe [13] compared the efficacy of the Otsu threshold and the k-means 
clustering algorithm for analyzing infected leaves. Their findings indicated that k-means 
clustering yielded lower feature values but offered enhanced clarity compared to other 
methods. The RGB image was employed for disease identification, utilizing k-means clustering 
to identify green pixels. Subsequently, Otsu's method was applied to obtain varying threshold 
values. For feature extraction, the color co-occurrence method was used, with the RGB image 
converted to the HSI translation. Texture statistics were computed using the SGDM matrix, 
and features were calculated through the GLCM function [14]. 
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Materials and Methods 
Figure 2 illustrates a flow encompassing all phases of the proposed approach. Utilizing 
Convolutional Neural Networks (CNNs) eliminates the need for explicit feature extraction, and 
relevant image parts do not require separation through segmentation. These tasks, among 
others, are implicitly handled by the intricate operations of the deep learning models. 
Repurposing a broadly pre-trained deep learning model for a specific application involves 
several key modifications. Firstly, the classification layer is replaced to arrange with the 
number of classes in the application. Secondly, the learnable layer that combines features from 
previous layers is replaced with a new layer [15], which may be a fully connected layer or a 
convolution 2d layer depending on the CNN model. Thirdly, to expedite training, some initial 
layers can be frozen, meaning their weights will not be updated during training. The number 
of frozen layers is determined empirically based on application requirements, testing 
performance, and training speed. In this work, no layers were frozen due to available hardware 
for extensive training. Fourthly, the dataset is prepared by resizing images to meet CNN 
requirements, and it is split into training and validation subsets. Image augmentation operations 
may also be applied to introduce more variety into the dataset and enhance the learning process. 
Finally, the CNN network is retrained with the tomato dataset, and its performance is evaluated 
in this concluding step [16].  
 
Plants play a crucial role in global food supply, and the impact of plant diseases on production 
can be mitigated through proactive monitoring. However, the manual surveillance of plant 
diseases by agricultural experts and botanists is labor-intensive, challenging, and prone to 
errors. To enhance disease monitoring and reduce the risk of severe outbreaks, machine vision 
technology, specifically artificial intelligence, emerges as a valuable solution [17]. An 
alternative approach to mitigating disease severity involves the collaborative efforts of 
computer technologies and human expertise. In this study, we propose a solution for detecting 
tomato plant diseases using a deep learning-based system that leverages image data of plant 
leaves. Our approach utilizes a deep learning architecture based on a recently developed 
convolutional neural network, trained in segmented and non-segmented tomato leaf images. 
Employing a supervised learning approach, we utilize the Inception Net model to detect and 
recognize various tomato diseases in this research work. 
 
Proposed Methodology 
The dataset encompasses 15,452 publicly available tomato leaf images, each illustrating 
features associated with nine distinct tomato diseases, alongside representations of the healthy 
state. The distribution of images per class is as follows: 2127 for bacterial spot, 1000 for early 
blight, 1909 for late blight, 952 for leaf mold, 373 for mosaic virus, 1771 for septoria leaf spot, 
1676 for spider mites, 1404 for target spot, 5357 for yellow leaf curl virus, and 1591 for healthy 
leaves. Each image corresponds to a photograph of a single leaf, representing one of the ten 
health classes [18]. All photos were taken against a neutral background, providing a relatively 
uniform appearance across all images. Additionally, each leaf is positioned at the center of its 
respective image. The dataset was obtained in JPEG format with a resolution of 256 _ 256. 
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Exemplar leaf images showcasing the nine diseases and healthy leaves are presented in Figure 
1. 
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Figure 1. Sample images 
 

 
Figure 2. Flow of the proposed model 
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In this study, the customization, retraining, and application of eleven deep-learning CNN 
models were explored for the classification of tomato diseases based on leaf images. These 
models varied in the input size, structure, and computational efficiency of their internal 
operations. Notably, the hyperparameters governing the training of these models, such as the 
number of iterations, were kept consistent throughout the research. The CNN models 
encompassed DenseNet, GoogLeNet, Inceptionv3, ResNet 101, ResNet 18, SqueezeNet, and 
Inceptionv3. Training was conducted using uniform hyperparameters across all models, with 
the number of training epochs [19]. This decision was informed by the observed training and 
validation behavior of the models. The system's available memory permitted a batch size of 16, 
and the solver optimization algorithm employed for network training was fast-converging 
stochastic gradient descent with momentum (SGDM) [20]. 

Accuracy= 
୘୰୳ୣ ୮୭ୱ୧୲୧୴ୣ ା ୘୰୳ୣ ୬ୣ୥ୟ୲୧୴ୣ

௉௢௦௜௧௜௩௘ାே௘௚௔
   (1) 

Precision = 
்௥௨௘ ௣௢௦௜௧௜௩௘

்௥௨௘ ௣௢௦௜௧௜௩௘ାி௔௟  ௣௢௦௜௧௜௩௘
  (2) 

Recall= 
்௥௨௘ ௣௢௦௜௧௜௩௘

்௥௨௘ ௣௢௦௜௧௜௩௘ାி௔௟௦௘ ௡௘௚௔௧௜௩௘
   (3)  

 
Results and Discussion 
Performance evaluation was undertaken to assess and compare the classification capabilities 
of the various deep transfer learning models, employing well-established and indicative 
performance metrics. The evaluation was conducted over 10 repetitions to account for random 
variations in the selection of data subsets, and the time requirements for training/validation 
were documented for all models across different configurations. Three data split strategies 
50,70 and 90 were employed to examine the models' abilities to learn from varied amounts of 
data and to identify potential underfitting or overfitting issues. Table 1 presents the mean values 
over 10 runs for the overall F1 score, precision, and recall using 50% of the data for training. 
DenseNet exhibited the highest mean F1 score at 97.5%, demonstrating exceptional 
performance, while SqueezeNet performed the least favorably with a 91.7% F1 score. These 
findings are further supported by the confusion matrices for the best and worst-performing 
models, as illustrated in Table 2. The matrix for SqueezeNet reveals a concerning pattern of 
misclassifying leaves with diseases as healthy, particularly for spider mites and target spots. 
Table 1. Model accuracy 

Name of the model Accuracy Precision  Recall 

DenseNet 98.3% 98.6% 91.2% 

GoogleNet 92.4% 93.6% 93.9% 

ResNet 101 98.3% 98.1% 97.8% 

ResNet18 96.9% 97.3% 96.3% 

SqueezeNet 89.7% 91.9% 95.6% 

InceptionV3 97.5% 98.0% 96.8% 
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Table 2. Confusion Matrix 
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While the current number of images has yielded satisfactory results, it is prudent to explore the 
impact of enlarging the training dataset. Deep learning models, unlike traditional machine 
learning algorithms, are known to exhibit improved performance with larger datasets. Table 2 
depicts the mean values over 10 runs for the overall F1 score, precision, recall using 70% of 
the data for training. All models demonstrated enhanced performance, with diminishing 
returns. SqueezeNet improved to a 91.8% F1 score, while DenseNet exhibited the best 
performance with an F1 score of 97.5%. The corresponding confusion matrices in Table 2 
support these performance values and highlight a substantially improved diagnosis, particularly 
regarding the misclassification of late blight  and yellow leaf curl as healthy. While most other 
models experienced reduced fluctuation, smaller models such as SqueezeNet and GoogLeNet 
did not seem to benefit significantly from additional training data, particularly concerning their 
sensitivity to random choices of images for inclusion in the training set.  
 
Conclusion 
Tomatoes, as a crucial mass-produced agricultural commodity, face susceptibility to diseases 
leading to potential yield losses. Leveraging deep transfer learning and established models has 
demonstrated significant potential in various applications within the existing literature. This 
study focuses on the specific task of identifying tomato diseases through infected leaf images. 
Customizing and retraining eleven deep-learning models using leaf images as input, we aimed 
to identify nine tomato diseases along with healthy plants. The performance of these models 
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was compared across six common metrics and training/validation times. While all models 
performed admirably, DenseNet emerged as the top performer, achieving values exceeding 
99% for all metrics. Conversely, the SqueezeNet model exhibited the fastest training and the 
shortest inference time. The transfer learning approach employed here is characterized by 
inherent credibility and reduced complexity. It obviates the need for explicit image processing 
or feature extraction, making it conducive to implementation in standalone smartphone 
applications. Such applications could prove invaluable for plant pathologists and farmers, 
offering swift and effective disease recognition and control. Future endeavors may involve the 
evolution of models through incremental learning during deployment. Additionally, the 
approach could be adapted for disease identification in tomato fruit images, potentially 
requiring 3D deep learning models to cover all sides of the fruit. Other models or ensembles of 
models could also be explored to address the same problem.  
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