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Abstract: 
The early and precise detection of breast cancer is one of the most crucial measures in the fight 
against it. Unfortunately, breast cancer is asymptomatic in the early stages, but certain 
symptoms may appear later on. However, when breast cancer is symptomatic, therapy may be 
difficult or even impossible, which can result in death. Future technique, info gain method, and 
random forest method are the three approaches employed. Thus, accurate risk assessment is 
crucial for lowering mortality. Due to the different risk profiles of women, such as delayed 
menarche, low drug misuse, and low smoking rates, certain computational algorithms for 
assessing breast cancer risk have been established in the developed world. However, these 
strategies do not function well in developing countries. We attempted to demonstrate the 
superiority of the random forest approach. In this study, we use the Random Forest Classifier 
(RFC) machine learning approach drinking, dangers at work, and menopausal age. Four 
strategies — utilizing Chi-Square, common data gain, Spearman relationship, and all elements 
— were exactly utilized in the component choice. When all risk factors were taken into account. 
The findings of the selected characteristics for mutual information gain and Chi-Square were 
identical. The Random Forest Classifier has a fair chance of accurately predicting a woman's 
risk of developing breast cancer. The study assisted in identifying the female breast cancer risk 
factors. This is important information that can assist women in focusing on those risk factors 
in an effort to lower the incidence of breast cancer. 
Keywords: random forest, breast, cancer, classifier   
 
1.0. Introduction: 
About a million women worldwide are affected by breast cancer each year, and approximately 
50% of cases result in death [1–5]. Breast cancer is most frequent in women. According to a 
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recent epidemiological research, three million new instances of breast cancer would be 
diagnosed annually worldwide by 2050 [6], indicating that the disease poses a serious threat to 
human life. If deterioration and mortality are to be avoided, early detection and intervention of 
breast cancer are best done when it is asymptomatic [7]. Numerous risk factors, some of which 
may be changed (behavioural risk factors) and others of which cannot (biological risk factors), 
make women more susceptible to breast cancer [8[While the behavioural risk factors can be 
reduced or eliminated by changing one's lifestyle. whereas examples of behavioural risk factors 
include smoking frequency, alcohol use, and workplace hazards. [9,10]. To compute the 
gamble of measurable model has been demonstrated to be a useful and reliable device. For 
ladies with an extensive family background of bosom malignant growth and comparative 
illnesses, the Gail model has been found to essentially downplay the gamble of creating bosom 
disease [1, 11-13]. This has confined the model's application to specific sorts of ladies. 
Concentrating on bosom disease risk factors in ladies, particularly Nigerian ladies, was our 
primary objective. Given the eccentricities of ladies, this is significant. Women have certain 
unique characteristics, including differences menarche ages. [14,15,16,17].  
Machine learning models are a few of the computational techniques that have previously been 
presented [19-26]. None of these models were created for women, and they also have a low 
level of predictability. Additionally, several of the computer models that are now being used 
[27,28 ,29–33]. A set of machine learning classification algorithms known as the (RFC) is 
comprised of a few individual choice trees that cooperate as a gathering [34].  
Each tree in the RF makes a forecast and casts a vote; the class with the largest number of votes 
decides the expectation for the entire model. One advantage [35–42]. Due to RFC's good 
performance [43–45] and the fact that it outperformed other machine learning algorithms, it 
has been suggested for the categorization of breast cancer in American women.  
The pre-processing technique will be incorporated into the modelling process and used to 
Nigerian women in order to improve the model's performance. Because RFC mixes many AI 
techniques thus utilizes their benefits, we speculated that it would perform better compared to 
other AI calculations that utilize a solitary model using three methods future method, info gain 
method and random forest method. 
 
2.0. Literature Review: 
Currently, there is a lot of interest in the research of picture categorization utilising deep and 
machine learning. Mammography images were classified using a variety of methodologies, 
including binary, multi, and dual classification, to demonstrate the effectiveness of the 
recommended methods. Recent research (Shen, Wu, & Suk, 2017) show that profound learning 
improves profound organization preparing by haphazardly erasing layers from convolutional 
brain organization (CNN) models. 
The Mobile Nets employ a realistic architecture based on depth-wise convolutions to build 
their deep neural networks (Howard et al., 2017). It was recommended to utilize ResNet to 
classify images. (Xie, Girshick, Dollár, Tu, & He, 2017) recommended VGG, Xception, or 
ResNet for breast cancer classification due to their excellent training accuracy (around 98 
percent). For the game plan of chest threatening development, it has been proposed (Li, Shen, 
Zhou, Wang, and Li, 2020) that histological pictures be used connected with DenseNet and 
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SENet. Results from five-overlay cross-endorsement uncovered an AUC of 0.9468, 
responsiveness of 0.886, and identity of 0.876 for the overhauled InceptionV3 configuration 
portrayed in (Wang et al., 2020). The Multiscale Assessment of the MIAS dataset The All 
Convolutional Cerebrum Association (Mom CNN) made by Shin et al. (2016) got 0.99 locale 
under the twist (AUC) and 96.2% mindfulness. (Zhu et al., 2019) suggest using a Smash 
Excitation-Pruning (SEP) block in a hybrid CNN designing to bunch chest sickness from 
histopathology pictures. We looked through the writing and found that mammography 
examination utilizing the DenseNet121+ELM model has not been finished. 
A study team in 2016 (Fabio A Spanhol, Oliveira, Petitjean, & Heutte, 2015) exhibited a 
precision of around 85.1% at the patient level utilizing SVM and PFTAS highlights. Scientists 
recognized cores in a recent report utilizing a dataset of 500 examples from 50 patients utilizing 
a wide scope of techniques, including fluffy C-implies, K-implies, serious learning brain 
organizations, and Gaussian blend models. Only benign and malignant diagnoses were taken 
into account in order to ensure accurate reporting. F-100% were attained (Kowal, Filipczuk, 
Obuchowicz, Korbicz, & Monczak, 2013). Scientists in 2013 showed 94% ID precision on a 
dataset of 92 examples for bosom malignant growth discovery utilizing a brain organization 
(NN) and support vector machine (SVM) based procedure with dismissal choice. They then, at 
that point, assessed 361 examples from the Israel Establishment of Innovation dataset and 
tracked down around 97% characterization precision (Zhang, Zhang, et al. The complexity and 
limitations of several publicly available annotated datasets were recently thoroughly discussed 
in a paper on histological image processing for breast cancer detection and classification (Veta, 
Pluim, Van Diest, & Viergever, 2014). using the gave engineering tone and surface elements 
and various classifiers using a democratic component, the typical acknowledgment rate for BC 
grouping at the patient not entirely set in stone to be 87.53%. This outcome was arrived at 
utilizing support vector machines, choice trees, nearest neighbor classifiers, discriminant 
investigation, and gathering classifiers. This approach fared better compared to all others in 
light of AI up till 2017 (Gupta & Bhavsar, 2017). 
Several papers that examine DL methods for breast cancer diagnosis rely on classification 
utilising CNN variants. The BreakHis dataset is essential for many of these experiments. A 
convolutional brain organization (CNN) was proposed in 2016 as an amplification free method 
for distinguishing bosom malignant growth utilizing convolution parts of differed sizes (7, 7, 
5 5, and 3 3).Convolutional neural network (CNN) and multi-task CNN (MTCNN) models 
were used to classify breast cancer patients with an 83.25% identification rate (Bayramoglu, 
Kannala, & Heikkilä, 2016). In a further research from the same year, breast cancer images and 
patients were categorised using an AlexNet-like model and several fusion techniques (sum, 
product, and max). According to Fabio Alexandre Spanhol, Oliveira, Petitjean, and Heutte 
(2016), the max fusion method allowed researchers to further develop acknowledgment 
exactness to a normal of 90% for picture grouping and 85.6% for patient characterization. This 
year witnessed the release of yet another method based on deep learning. In this study, feature 
vectors were gathered using a convolutional neural network (CNN) and input into a classifier. 
Fabio A. Spanhol's DeCAF Another challenging dataset, H&E-stained images from breast 
biopsies, was categorised in 2017 using the CNN model. The four labels for the images were 
normal tissue, benign lesion, in situ malignancy, and aggressive cancer. Images included both 
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"invasive" and "in situ" cancer. For more details, go to (Arajo et al., 2017), which includes the 
findings of the patch-based and image-based evaluations. The binary class trial on BC using 
images from histopathology, categories breast cancer. The BreakHis dataset has been subjected 
to a number of machine learning and deep learning techniques, but our new DL architecture 
has shown to be the most successful. The best findings were obtained by Hayani, & Algamal 
(2017), although our method yields cutting-edge results based on methods utilised to identify 
breast cancer in 2017). By utilising a cutting-edge deep learning model on the Break dataset, 
our research tackles the issue of BC categorization.  the datasets from the 2015 Breast Cancer 
Classification Challenge and his. The model in question is the Inception Recurrent Residual 
Convolutional Neural Network (IRRCNN). A novel hybrid Extreme Learning Machine Model 
(ELM) based on DenseNet121 is presented in which breast cancer is detected from 
mammography pictures. The mammograms underwent preprocessing and data augmentation 
to improve their quality. In the subsequent step of categorization, attributes were independently 
collected after initially being pooled and flattened. The completely con-ELM model for 
attributes.  
We applied a machine learning method to replace the fully connected layer. The weights of the 
model employed in the extreme learning machine were optimised using AdaGrad to make it 
more reliable and effective. AdaGrad was chosen as the preferred optimisation methodology 
because, in comparison to other techniques, it converges rapidly. The Convolutional Brain 
Organization (IRRCNN) model is utilized to represent these ideas. The IRRCNN is a strong 
profound convolutional brain network that joins the upsides of the Initiation Organization 
(Commencement v4), the Remaining Organization (ResNet), and the Intermittent 
Convolutional Brain Organization (RCNN). 
 
3.0. Methodology: 
Using the training dataset, data was preprocessed by computationally and objectively choosing 
a subset of features from all risk categories. These features were then utilised to build 
classification models. Three methods were used to choose the features. The initial method 
involved calculating the correlation coefficient between all the risk variables and the subject's 
actual diagnosis, which was determined to be either verified malignant or benign. The risk 
variables that had a strong link with the actual data were chosen and classified. Since all of the 
risk factors are categorical categories, Spearman correlation was applied. Three feature 
selection algorithms were applied in the second strategy. It is generally known that these feature 
selection techniques are good at spotting characteristics that could perform well in 
classification experiments [46–49]. The 25 risk variables included in this study were all 
employed as the third strategy using three methods future method, info gain method and 
random forest method. By employing these strategies, we may find the most effective feature 
selection technique and produce a robust model with a high predictive value for breast cancer. 
For the training and testing sets, the dataset was divided 70 to 30 accordingly. This suggests 
that we divided the 90 malignant into 63 for training and 27 for testing at random. It was done 
again for benign. Therefore, 126 data in total were used for training and 54 for testing. The 
instruction using three methods future method, info gain method and random forest method. 
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4.0. Result and Discussion: 
It demonstrates the output of the classification method for the RFC and SVM models utilising 
the three sets of features. The results demonstrate that when increased to 97%. Chi-Square 
features with 98.33% accuracy, 100% sensitivity, 96.55% specificity, and 98% AUC provided 
the greatest performance. 
 

 
 
 [21], Additionally, we contrasted our model with the well-liked and extensively applied Gail 
model [50]. 95.00% accuracy, 90.32% sensitivity, and 100% specificity were provided by the 
Gail model. This demonstrates and even outperforms it since it has higher sensitivity, which 
means that it is more accurate at predicting the risk of developing cancer in women using three 
methods future method, info gain method and random forest method. 
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Data visualization (features) 

 
 
Well-known Gail model. Defects in Gail's model [51]. The Gail model has already been used 
to Caucasian women without a major breast cancer history. However, our suggested approach 
can handle predicting breast cancer in black women, whether or not they have a strong history 
of breast cancer. A rough estimate of 36% of our participants had a history of benign breast 
illness, and 9% of them had a major. These are the instances where the Gail model was found 
to overestimate the risk of breast cancer [52] using three methods future method, info gain 
method and random forest method. 
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We discovered that five risk factors—exercise, pesticide usage, fruit intake. The two most 
significant risk variables are also exercise and pesticide usage. This result matches those of 
previous research conducted in the industrialised world [53–56]. The research that originally 
identified these risk variables was this one using three methods future method, info gain method 
and random forest method. 

 
 
Data visualization (features) 
 

 
 
This study has a lot of advantages. The first is the propensity for risk variables to occur. Our 
accuracy rate for predicting breast cancer using risk factors alone was 98%. This is noteworthy 
because it suggests that breast cancer may be accurately predicted using the proposed model 
without the need of imaging or any laboratory tests. Because women have less access to high-
quality healthcare facilities, this is good news for them. The lack of good diagnostic hospitals 
is a result of funding restrictions. Being able to predict breast cancer using just risk factors 
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suggests that the disease can be detected even before symptoms appear, leading to early 
treatment and subsequently lower mortality. 
The usage of the ensemble machine learning method RFC is the second major strength of this 
study. Because they blend many machine learning algorithms and use their individual 
capabilities. Additionally, RFC provided a specificity of about 97%, demonstrating that 97 out 
of 100 patients without breast cancer were properly identified as such. This holds great promise 
using three methods future method, info gain method and random forest method. 

 
After Applying Feature Selection (look row no 5 & 6) classifier results.  
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Results of Seq model with Adam optimizer 
Precision: 0.703125 
Recall: 1.000000 
F1 score: 0.825688 
======================== 
 Seq model 3: with Adam Optimizer Accuracy: 0.889 
--------------------
****************************************************************** 
Hyper Tuning – GridSearch CV 
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Precision: 0.906250 
Recall: 0.865672 
F1 score: 0.885496 
======================== 
'Seq model 4 :  with Adam Optimizer Accuracy: 0.912 
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This study's inclusion of a data pre-processing phase in the modelling is its third main strength. 
Pre-processing is known to enhance computational models [29–33]. Feature extraction 
represented the main preprocessing phase. It is for the most part realized that include 
determination models can improve the characterization execution of AI calculations [46–49]. 
Three methods were utilised for the feature. This demonstrates how adding a pre-processing 
phase to our modelling approach enhanced the effectiveness of the suggested model. The 
study's participants' singularity is its fourth key strength. We looked at females. This 
demonstrates how distinctive our study is. This study is especially exceptional since it 
identified 11 risk variables that are reliable indicators of female breast cancer. There were 25 
risk variables examined, however only 11 were shown to be highly predictive. The sample size 
is the study's main drawback using three methods future method, info gain method and random 
forest method. The fact that we only looked at 180 people suggests that the results might not 
be easily generalizable. Data availability, a frequent characteristic of, placed constraints on us. 
Future research should think about enlarging the sample size to improve the generalizability of 
the findings using three methods future method, info gain method and random forest method. 
 
5.0. Conclusion 
Our goal in studying a group of only based on risk indicators using three methods future 
method, info gain method and random forest method. For the effective prediction of female 
breast cancer, we created a Random Forest Classifier. Our findings demonstrate that risk 
variables are only highly predictive of breast cancer even before any symptoms appear. 
Additionally, our findings support the hypothesis that using three methods future method, info 
gain method and random forest method. The main causes of breast cancer in women were also 
found. This is important information that can assist women in focusing on those risk factors in 
an effort to lower the incidence of breast cancer. In comparison to the info gain approach and 
the future method, we have discovered that the random forest method produces better 
outcomes. The random forest approach is the most effective treatment for breast cancer. 
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