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ABSTRACT    
In recent years, several contaminants have posed a threat to rivers, streams and lakes. The 
ability to analyse and anticipate water quality has emerged as an aid in the fight against the 
contamination of water. Various seasonal factors along with physicochemical properties 
influence water quality over time. Water quality data becomes time series data and the values 
of parameters change as meteorological conditions change over seasons at each location. Hence 
good time series analysis is required to forecast water quality.  Considering the significance of 
Recurrent Neural Network (RNN) for time sequence data, this work is intended to build a water 
quality prediction model by learning seasonal patterns in the time series dataset.  The dataset 
contains 10560 unique instances that describe both physicochemical and seasonal factors. 
Predictive models are developed using RNN and its variants GRU and LSTM and evaluated. 
Promising results are produced as a result of augmenting seasonal data with regular 
physicochemical properties while training the model. 
Keywords: River Water Quality, Prediction Model, Deep Learning Architectures, 
Physicochemical Parameters, Seasonal Parameters 

1. INTRODUCTION
The survival of the vast majority of living species, including humans, depends on water, 
making it the essential resource for life.  Water with high quality is important for all forms of 
life. Water-dependent species can only tolerate less amount of pollution before they disappear. 
When some conditions are not satisfied, the survival of these creatures is endangered. 

Automatic water quality monitoring stations need to be built in many important areas and 
accurate water quality prediction methods are critical for timely monitoring and controlling 
water pollution. Various water treatment methods such as anaerobic, aerobic, activated sludge 
methods, and membrane bioreactor treatments are used to treat the wastewater and thereby 
control the pollution. Physicochemical treatment is employed to separate the colloidal particles 
in the water.  

The physicochemical factors such as conductivity, turbidity, total alkalinity, chloride, 
ammonia, hardness, sulphate, sodium, phosphate, boron, potassium, BOD, fluoride, nitrate, 
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coliform and dissolved oxygen are some of the common parameters to determine water quality 
index. Water quality is affected by several seasonal conditions during various seasons. In 
addition to physicochemical properties, seasonal attributes such as temperature, dew, humidity, 
precipitation, wind speed, and visibility are also equally important in predicting water quality. 

Several research works use only a limited set of physicochemical parameters to build water 
quality, forecasting models. Increasing the number of physicochemical factors and the 
inclusion of seasonal variables can improve efficiency in water quality prediction. 

The grey relational method, mathematical statistics method, model-based approach, Bayesian 
approach, Genetic Algorithm, MLP regressor, and support vector regressor are computational 
methods used by researchers currently in the existing water quality prediction research.  

Umair Ahmed et al. [2] established an efficient water quality prediction Framework with 
supervised machine learning. This framework provided a strategy that employs four 
information boundaries, namely temperature, turbidity, pH, and solids that have been entirely 
dispersed. The research was supported by data from PCRWR, which included 663 samples 
from 12 distinct wellsprings in Pakistan's Rawal Lake. WQI was evaluated utilising a range of 
AI calculations directed by agents and also calculating relapse and categorization. The eight 
lapse calculations for WQI and 10 classification calculations for ordering experiments into 
predetermined WQC computations had been assessed. 

Shuangyin Liu et al. proposed a half-and-half methodology of help vector relapse with 
hereditary calculation advancement for hydroponics water quality prediction [5]. This paper 
proposes a forecast model based on help vector relapse (SVR) to address the hydroponics water 
quality expectation issue. When putting together a successful SVR model, the SVR boundaries 
should be set with caution. This study presents a half-and-half methodology known as genuine 
worth hereditary calculation uphold vector regression (RGA-SVR), which looks for the best 
SVR boundaries using genuine esteemed hereditary calculations and then uses the best 
boundaries to build the SVR models. The methodology is used to forecast the hydroponics 
water quality data collected from Yixing’s oceanic plants in China. The results show that RGA-
SVR outperforms the standard SVR and back-engendering (BP) neural organisation models 
based on the root mean square error (RMSE) and mean outright rate blunder (MAPE). This 
RGA-SVR model is a viable method of dealing with anticipated hydroponics water quality. 

Salisu Yusuf Muhammad et al. [6] introduced a machine learning-based water quality 
classification model. This article proposes a reasonable grouping model for ranking water 
quality based on AI calculations. The paper separated and analysed the presentation of various 
arrangement models and calculations to identify the key factors that contributed to the 
classification of the water nature of the Kinta River in Perak, Malaysia. Five mathematically 
precise models were evaluated, compared, and displayed. The Lazy model utilising the K Star 
calculation was the most accurate grouping model among the five models, with an exactness 
of 86.67%. In general, wastewater is hazardous to human health, and it is essential to develop 
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logical models to address this problem. 

Liao and Zhao [18] focused on dissolved oxygen for water quality prediction and proposed a 
combined model consisting of fuzzy neural networks (FNN), principal component analysis 
(PCA), and differential evolution by the BP algorithm (DEBP). PCA contributes to the 
dimension reduction of the input data vector and differential evolution algorithm. 

Wang et al. [17] demonstrated an LSTM (long- and short-term memory) neural network-based 
deep learning approach. The LSTM NN model was constructed for prediction, followed by the 
collection of training data from Taihu Lake and the selection of appropriate parameters to 
improve neural network accuracy. Due to the nonlinear, dynamic, changing, and complex 
nature of the water parameter quality parameters, predicting WQ is a hard task. Due to these 
traits, traditional forecasting algorithms suffer from poor accuracy and increased processing 
complexity. 

This study aims to develop an enhanced water quality prediction model by exploiting the 
importance of Recurrent Neural Network (RNN) for time sequence data. Time series seasonal 
data is obtained from the visual crossing site based on the location of eleven sampling stations 
of the Bhavani River.  The river water quality predictive model is built using RNN variants 
such as LSTMs and GRUs, and the models are evaluated for their its efficiency.  

2. DATA COLLECTION AND DATASET PREPARATION
In our earlier research, a water quality predictive model was constructed by identifying the
trends from physicochemical features in time series river water data.  The training dataset
included 26 physicochemical parameters such as pH, conductivity, turbidity, phenolpth
alkalinity, total alkalinity, chloride, COD, TKN, ammonia, Ca. hardness, Mg. Hardness,
sulphate, sodium, TSS, TDS, FDS, phosphate, boron, potassium, BOD, fluoride, Nitrate-N,
DO, TC and FC. as shown in Table 1.

Table 1: Sample Physicochemical Parameters Collected from Sampling Stations 

pH 7.15 7.46 7.5 7.18 7.45 7.05 7.4 7.38 7.56 7.1 
Conductivity 340 339 339 340 340 342 341 339 340 340 
Turbidity 2 2 2 2 2 2 2 2 2 2 
Phenolpth 
Alkalinity 0 0 0 0 0 0 0 0 0 0 
Total Alkalinity 111 110 112 111 110 110 112 111 112 111 
Chloride 21 21 22 21 20 20 20 21 21 21 
COD 4 3.9 4 3.9 4 4 4 3.9 3.9 4 

TKN 0.1 0.1 0.09 0.1 0.1 0.09 0.1 0.1 0.1 0.11 

Ammonia 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
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Hardness 118 118 119 119 119 119 118 118 118 117.5

Ca. hardness 74 74 74.5 74.5 74 73.5 73.5 73.5 74 74 

Mg. Hardness 44 44 44 43.5 43.5 43.5 44 44 44 44 

Sulphate 12 12.5 12 12 12.5 12.5 12 12 12.5 12 

Sodium 27.1 27.1 27.2 27.2 27 27.1 27.1 27 27.1 27.1 
TSS 300 300 300 300 300 300 300 300 300 300 
TDS 190 190 189 189 189 190 189 190 189 188 

FDS 174 174 174 174.5 174.5 174 174 174 173.5 173 

Phosphate 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 
Boron 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Potassium 2.67 2.67 2.66 2.66 2.67 2.67 2.66 2.66 2.66 2.66 

BOD 0.89 0.87 0.89 0.88 0.85 0.87 0.82 0.81 0.88 0.82 

Fluoride 0.12 0.18 0.18 0.18 0.18 0.17 0.17 0.17 0.18 0.18 
Nitrate-N 1.1 1.1 1.1 1 1.2 1 1.2 1.2 1.2 1.2 

DO 6.99 6.97 6.81 7.19 7.3 7.39 7.06 7.02 6.97 7.39 
TC 88 98 118 86 65 105 83 113 65 85 

FC 80 80 80 79.5 79.5 79 79.5 80 80 80 

Seasonal parameters affect river water quality over time due to sudden climatic changes. It has 
been observed from the literature that the seasonal parameters have an impact on the water 
quality index and its prediction over time series data. Simultaneous rainfall and humidity are 
strongly related, the relative humidity improves as a result of the evaporation of rainwater. The 
Davis Cup Anemometer is used to measure wind speed at a height of three metres above the 
ground and is compared to more conventional measurements taken at a height of 10 metres. 
An increase in wind speed decreases the transition time between evaporative stages at low-
velocity values. Dew is a vital source of river water that greatly impacts the microclimate and 
the physiological state of the vegetation. Global warming will alter the distribution of 
precipitation by altering air temperatures and circulation patterns. All of the seasonal factors 
have an impact on water quality by altering the acceptable limits of physicochemical 
parameters, hence diminishing water quality. Hence in this work, the seasonal features are 
considered for the same period of study and their importance is incorporated to enhance the 
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efficiency of the predictive model. 

The seasonal features acquired from visual crossing sites are based on sampling station 
locations from January 2016 to December 2020 and the sample data is shown in Table 2. 
Seasonal Parameters like dew, humidity, sea level pressure, precipitation, precip over, wind 
speed, wind direction, cloud cover, and visibility are considered here as these characteristics 
change with the season over time. These seasonal attributes are pooled with physicochemical 
parameters to develop a dataset in this work. 

Table2: Sample Seasonal Parameters Collected Visual Crossing Site 
Temp 25 24 25 25 25 24 24 25 25 25 
Dew 15.7 14.6 13.4 13.6 15.6 17.7 18.9 19.4 18.3 17.8 

Humidity 
59.3 56.72 51.89 53.06 58.8 62.79 68.91 68.63 65.71 63.8 

Sea level 
pressure 

1016.6 1017.1 1015.8 1015.7 1014.8 1014.8 1015.5 1015.5 1013.7 1014.5

Precipitation 0 0 0 0 0 0 0.2 0 0 0 
Precip cover 0 0 0 0 0 0 4.17 0 0 0 
Windspeed 16.3 14.4 13.1 15.4 14 18.7 40.2 13.6 14.4 14.9 

Wind dir 
52.9 62.3 61.7 68.2 56.5 69.3 114.6 95 94.9 65.1 

Cloud cover 27.4 17.9 5.5 14.1 14.6 16 32.3 42.5 26.3 14 
Visibility 5.5 6 5.7 5.9 5.6 5.5 4.8 5.3 5.1 5.4 

The temporal variation of both physiochemical and seasonal parameters is illustrated in Fig.1a 
and Fig1 b. 
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Fig.1 a. Temporal Variation of Some Physicochemical Parameters of Water in the 
Bhavani River 
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Fig. 1b. Temporal Variation of Some Seasonal Parameters of Water in the Bhavani 
River 

The Water Quality Index (WQI) is a tool used to measure the quality of water. It is composed 
of several seasonal attributes that are used to assess the overall health of a water body. 
Temperature is an important attribute as it helps to indicate the presence of certain species, as 
well as the activity of the water body.  Dew is a measure of the amount of water vapour present 
in the atmosphere. It is significant to determine water quality because it helps to regulate the 
temperature of the environment, and it can also indicate the amount of precipitation that is 
likely to occur. Humidity is a measure of the amount of water vapour present in the air. It is 
also important to measure the water quality as it can affect the rate of evaporation, and also 
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indicate the temperature of the environment. 

Sea level pressure is a measure of the atmospheric pressure at sea level and is important in 
water quality prediction because it can affect the rate at which water evaporates, and also 
indicate the amount of precipitation that is likely to occur. Precipitation is a measure of the 
amount of liquid or solid water particles that have fallen from the atmosphere. It is crucial for 
maintaining water quality as it can affect the amount of dissolved oxygen in the water, and it 
can also indicate the pollutants that are present. Precip Over is a measure of the amount of 
precipitation that has fallen over a certain period. It has a significant impact on the quality of 
water because it can indicate the number of pollutants that are present in the water, and it can 
also indicate the number of nutrients that are available for plant growth.  

Wind speed is a measure of the speed of the wind that is blowing. It is important to water 
quality prediction because it can affect the rate at which water evaporates, and it can also 
indicate the pollutants that are present in the water. Wind direction is a measure of the direction 
in which the wind is blowing. It plays a vital role in water quality because it can affect the rate 
at which water evaporates, and it can also indicate the number of pollutants that are present in 
the water. Cloud cover is a measure of the amount of water vapour that is present in the 
atmosphere. It has a significant effect on water quality due to its ability to affect the rate of 
evaporation, and it can also indicate the volume of pollutants that are present in the water. 
Visibility is a measure of how far one can see in the atmosphere. It is a key factor in the quality 
of water because it can indicate the pollutants that are present in the water, and it can also 
indicate the number of nutrients that are available for plant growth. 

Table3: Water Quality Parameters 
Physicochemical Parameters Seasonal Parameters 

pH TSS Temperature 

Conductivity TDS Dew 

Turbidity FDS Humidity 

Phenolphthalein 
Alkalinity  

Phosphate Sea level pressure 

Total Alkalinity Boron Precipitation 

Chloride Potassium Precip cover 

COD BOD Windspeed 

TKN Fluoride Wind dir 

Ammonia Nitrate-N Cloud cover 
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Hardness TC Visibility 

Ca. hardness FC Spatial Parameters 

Mg. hardness Dissolved Oxygen Station ID 

Sulphate Temporal Parameter Latitude 

Sodium Date Longitude 

Thus, twenty-six physiochemical attributes are pooled with ten seasonal attributes along with 
spatial parameters to develop the WQI-SA dataset. Finally, there is a total of 40 attributes 
forming the time series data prepared for this research work.  

The data collected on river water quality is subjected to exploratory data analysis to 
comprehend the properties of the data and evaluate the significance of each parameter in 
generating the water quality index. The physicochemical data collected from the sampling 
stations and the seasonal data collected from the visual crossing site are listed in Table 3. 
Statistical methods such as heatmaps, boxplot analysis, pair plot analysis, and histograms have 
been utilised to analyse and understand the distribution of parameter values. According to 
boxplot studies, seasonal parameters like wind speed, and cloud cover characteristics have a 
broad range of values. While wind speed ranges between 10 and 270, and cloud cover is 
between 0 and 100. Therefore, the parameter values are normalised so that they lie within the 
usual range for each parameter. Wind speed and cloud cover are standardised using the min-
max approach. Using Pearson correlation, the heatmap is used to visualise and analyse the 
correlation between the parameters, such as positive and negative. The bar graph analysis of 
humidity, wind speed, cloud cover, visibility and physicochemical parameters are depicted in 
Figure 2a. pH, turbidity, FDS, TSS, boron, TC, cloud cover, and wind speed are the parameters 
that have a negative correlation with WQI and are displayed in Fig. 2b. 

 Fig.2a Bar graph analysis Fig.2b Heatmap analysis 

EDA reveals that some instances in the dataset include missing values that must be eliminated, 
so data cleaning is performed. EDA explains better about the attribute distributions and 
parameter correlations, providing suitable solutions for data modelling and pre-processing 
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needs. 

The Water Quality Index (WQI) is a measure of the overall water quality of the proposed 
system. The WQI can be used to monitor changes in water quality over time and to assess the 
suitability of the water body. It is calculated by taking the average of several factors that are 
indicators of water quality, like dissolved oxygen, pH, nutrient levels, and turbidity. The WQI 
is then assigned a score based on a range of 0 to 120, with higher scores indicating poor water 
quality. The WQI is computed and then added as the target variable along with the 40 
independent variables for the WQI modelling prediction task. Hence in the work, the dataset 
includes both physiochemical and seasonal parameters and it contains 10560 instances. 

Feature selection is a vital phase in predictive modelling in which appropriate parameters that 
contribute significantly to predicting the target variable are chosen. The select K best algorithm 
is employed in this case to identify important features in calculating the water quality index. 
According to the select K best feature selection algorithm, conductivity ranks first in estimating 
the water quality index, followed by ammonia, and phosphate. The negatively ranked two 
attributes from feature selection such as boron and phenolpth alkalinity are considered as not 
important and removed from the dataset. 

This feature selection method improved the river water quality dataset and finally the dataset 
with 10560 instances and 38 attributes has been developed and is named as WQI-SA dataset 
for reference. 
3. WATER QUALITY INDEX PREDICTION MODEL
The problem of predicting the water quality index is formulated as a regression problem and
solved using deep neural network architectures. Deep neural networks accurately describe,
classify, and characterise data by using data inputs, weights, and biases. Deep neural networks
have many layers of interconnected nodes, with two visible layers serving as input and output
layers to improve prediction. Fig.3 illustrates the proposed framework architecture for the WQI
prediction model. The pre-processed data is consumed by the deep learning model at the input
layer, and the final prediction is made at the output layer. Large amounts of data can be used
to train models, and the model improves as more data is added, as well as making high-quality
predictions.
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Fig. 3 Proposed WQI Model Architecture 

Deep learning architectures such as recurrent neural networks, long short-term memory and 
gated recurrent networks are specifically designed and developed to train the sequence data 
and hence chosen in this work to build the river water quality index, prediction model. In a 
Recurrent Neural Network (RNN), the result from the previous section is used as input for the 
next. The Hidden state, which stores information about a sequence, is the primary and most 
crucial component of RNN.  Due to their limited ability for long-term memory, RNNs are 
susceptible to the vanishing gradients problem. The primary problem for RNN is preserving 
data consistency across a large number of time steps. Gated recurrent networks and Long Short-
term Memory are employed to overcome the vanishing gradient problem.  

An LSTM recurrent unit seeks to recall all the earlier data encountered by the network and to 
forget irrelevant data. Each LSTM recurrent unit further stores a vector known as the Internal 
Cell State, which conceptually describes the information retained by the preceding LSTM 
recurrent unit. GRU employs a so-called update gate and reset gate to overcome the vanishing 
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gradient problem of a typical RNN. Essentially, they are two vectors that determine what 
information is sent to the output. The unique characteristic of these systems is that they may be 
trained to retain knowledge from a long time ago without erasing it or removing extraneous 
data. 

The 70% of instances of the WQI-SA dataset prepared as above are given as input to RNN and 
its variants LSTM and GRU for training the networks. The best hyperparameters are chosen 
during model training to make the model more effective at mapping the input features as 
independent variables to the target variable as the dependent variable. 

Hidden layers, dense layers, optimizer, epoch, momentum, batch size, activation function, and 
dropout are examples of hyperparameters that are utilised in deep learning architectures to 
enhance model accuracy and fine-tune the WQI forecasting model. Hidden layers are the layers 
that are in between the input and output layers. A layer that is densely connected is one in 
which each layer receives input from all of the layers below it. The range is set between 5 and 
10 units, and dense layers improve overall accuracy. Optimizers are methods that alter the 
properties of the neural network, like its weights and learning rate, to reduce losses and address 
optimization issues. The number of dataset complete iterations required is determined by the 
epoch size. Momentum is a unique hyperparameter that enables the search direction to be 
determined not only by the gradient from the current step but also by the gradients from 
previous steps. The model’s nonlinearity is introduced through activation functions. The 
activation function can split them into different layers and get a reduced output of the density 
layer. By passing randomly selected layers and limiting sensitivity to particular layer weights, 
the dropout layer helps prevent training overfitting. The speed at which a deep model replaces 
a previously learned concept with a new one is determined by the learning rate. Finally, the 
WQI prediction models are built by representation learning from the input instances using 
GRU, LSTM, and RNN with proper hyperparameters settings.  

The effectiveness of the WQI forecasting model is evaluated using the evaluation metrics such 
as R2 score, root mean squared error, mean squared error, and mean absolute error. An 
estimator's mean squared error is the average of error squares or the difference between the 
predicted value and the actual value. The average difference between the predicted value and 
the actual value is what is used to calculate the mean absolute error. The root mean square error 
is used to measure a model's prediction error for quantitative data, which is a metric that 
indicates how well a regression line fits the data points. The R2 score value determines the 
accuracy of the model. If the R2 score value is high then the model is considered to be good in 
predicting the target variable and if the R2 score is less than 0.5 then the model is not considered 
to be good.  The prediction models are found to be effective when the error rate is less with a 
high R2 score value. In this work, the performance of the WQI predictive models built with 
physicochemical and seasonal data is evaluated using the metrics with 30% of the dataset as 
the test set.  
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4. EXPERIMENT AND RESULTS
In our previous work, the experiments were carried out by training the time series WQI-PCA
dataset that consists of only samples with physicochemical parameters and prediction models
were built by employing deep neural architectures such as RNN, LSTM, and GRU. The
prediction results of the models were obtained as shown in Table 4 and found that the GRU-
WQI-based prediction model showed 88% of accuracy in predicting WQI.

Table 4: Prediction Result using WQI-PCA Dataset 

Dataset Model MAE MSE RMSE 
R2 

Score 

WQI-PCA 

RNN-WQI 0.496 0.275 0.525 0.828 

LSTM-WQI 0.483 0.339 0.583 0.852 

GRU-WQI 0.364 0.121 0.348 0.885 

In this work, using python libraries, the experiments were carried out by implementing the 
same three deep learning architectures.  The RNN, LSTM, and GRU networks have been 
trained with the training dataset WQI-SA, which contains 7396 tagged samples and which is 
the 70% of the instances of the WQI-SA dataset. Evaluation of the prediction models is carried 
out to check the efficiency of the model using the metrics like R2 score, root mean squared 
error, mean squared error, and mean absolute error with the test data set containing 3170 
instances. 
The deep learning structures RNN, LSTM, and GRU are characterised by different 
hyperparameters, for example, dense layer values from 5 to 10 units, Optimizer as Adam 
optimizer. The epoch sizes were listed as 20, 50, 100, 150, and 200. The activation functions 
are defined as relu, sigmoid and tanh, and the momentum is set between 0.5 and 0.9. The 
dropout unit is 0.2, the learning rate is 0.1, and the batch size is set at either 32 or 64. 

Table 5: Hyperparameters Setting for Deep Learning Architectures 

Hyperparameter Values Hyperparameter Values 

Optimizer Adam Dropout 0.2,0.3 

Dense Layer 5 to 10 Momentum 
0.5 or 

0.9 

Epoch 

20, 50, 
100, 
150, 
200 

Learning rate 0.1 

Batch size 32/64 
Activation 
function 

Relu, 
sigmoid, 
and tanh 
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The evaluation results of RNN architecture with different epoch sizes such as 20, 50, 100, 150 
and 200 are observed. The epoch size converges to 200 and from the prediction results, it is 
observed that the root mean squared error is 0.18. The mean absolute error is found as 0.15 
when the epoch size 200 is set for the RNN algorithm. The evaluation results of RNN 
architectures found that the mean squared error is 0.0324 and the R2 score value is observed 
as 0.84.    

The prediction results of the LSTM network for various epoch sizes such as 20,50, 100, 150, 
and 200 are noticed and found that epoch size 200 is showing better prediction results. The 
mean absolute error is 0.046 and the mean squared error is 0.01 for the LSTM algorithm when 
the epoch size is set to 200 and the optimizer is Adam. Similarly, it is found that the root mean 
squared error shown by LSTM-based WQI prediction model is 0.1 and the R2 score value is 
found to be 0.9 when the epoch size is set to 200. 

The results of GRU based WQI prediction model for various epoch sizes 20, 50,100,150 and 
200 are measured. The mean absolute error is found to be 0.134 and the mean squared error of 
0.0576 for epoch size 200 is observed. It is observed that the root mean squared error is 0.24 
and the R2 score is 0.88 found for the GRU-based WQI forecasting model when the epoch size 
is 200. 

The performance evaluation of the WQI prediction model based on the WQI-SA dataset and 
deep learning architectures RNN, LSTM and GRU concerning various metrics such as mean 
squared error, mean absolute error, root mean squared error and R2 score using different epochs 
is shown in Table 6a, 6b and 6c and illustrated in Fig 4a, Fig 4b Fig 4c and Fig 4d.  

Table 6a. Prediction Results of RNN Models for Various Epochs 

Dataset Epochs MAE MSE RMSE 
R2 

Score 

WQI-
SA 

200 0.15 0.0324 0.18 0.84 

150 0.19 0.0484 0.22 0.83 

100 0.25 0.0625 0.25 0.832 

50 0.28 0.0784 0.28 0.824 

20 0.39 0.0961 0.31 0.79 

Table 6b. Prediction Results of LSTM Models for Various Epochs 

Dataset Epochs MAE MSE RMSE 
R2 

Score 

WQI-SA 

200 0.046 0.01 0.1 0.9 

150 0.091 0.0169 0.13 0.89 

100 0.13 0.0324 0.18 0.886 

50 0.135 0.057 0.24 0.884 

20 0.142 0.084 0.29 0.87 
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Table 6c. Prediction Results of GRU Models for Various Epochs 

Dataset Epochs MAE MSE RMSE 
R2 

Score 

WQI-
SA 

200 0.134 0.0576 0.24 0.88 

150 0.146 0.0625 0.25 0.873 

100 0.15 0.0852 0.292 0.877 

50 0.17 0.102 0.32 0.867 

20 0.19 0.122 0.35 0.85 

 Fig. 4b. Evaluation of LSTM Architecture Fig. 4a. Evaluation of RNN Architecture  

Fig 4d. Performance Analysis using WQI-SA Dataset Fig. 4c. Evaluation of GRU Architecture 

Various experiments have been carried out with different dropout rates such as 0.2 and 0.3 for 
building WQI prediction models using the WQI-SA dataset and the experimental results 
concerning the same evaluation metrics are shown in Table 7a, 7b and 7c. 
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Table 7a.  Prediction Results of RNN for WQI-SA Dataset and Different Dropouts 

Dataset Dropout MAE MSE RMSE 
R2 

Score 

WQI-
SA 

0.3 0.15 0.18 0.424 0.84 

0.2 0.17 0.2 0.44 0.83 

Table 7b.  Prediction Results of LSTM for WQI-SA Dataset and Different Dropouts 

Dataset Dropout MAE MSE RMSE R2 Score 

WQI-
SA 

0.3 0.046 0.01 0.1 0.9 

0.2 0.091 0.0169 0.13 0.89 

Table 7c.  Prediction Results of GRU for WQI-SA Dataset and Different Dropouts 

Dataset Dropout MAE MSE RMSE R2 Score 

WQI-
SA 

0.3 0.134 0.0576 0.24 0.88 

0.2 0.146 0.0625 0.25 0.873 

The prediction results of WQI models for various epochs and dropouts have been observed 
while implementing deep learning algorithms to discover the best prediction results. It is 
proved that the models trained with 200 epochs and dropout rate 0.3 with other 
hyperparameters Adam optimizer, the learning rate is 0.1, set for RNN, LSTM and GRU 
produced best results and are shown in Table 8. 

Table 8. Best Prediction Results of Deep Learning Algorithms 

Dataset Dropout  Epoch Algorithm MAE MSE RMSE 
R2 
Score 

WQI-
SA 

0.3 200 

RNN 0.15 0.0624 0.25 0.84 

LSTM 0.046 0.01 0.1 0.9 

GRU 0.134 0.0576 0.24 0.88 

From the above results, it is observed that the LSTM-based WQI prediction model shows 
promising results with a high R2 score value and less error rate. The mean absolute error for 
LSTM based forecasting model is found less as compared to RNN and GRU algorithms. The 
root mean squared error is observed to be less for LSTM architecture when compared with 
RNN and GRU-based prediction model results. The R2 score value defines the accuracy of the 
model and is observed to be high for LSTM-based forecasting models compared with other 
prediction models.  

The performance of these forecasting models is compared with the previously developed WQI-
PCA dataset for WQI prediction models. The evaluation results of RNN architectures are 
observed to mean absolute error value is found as 0.496 when the WQI-PCA dataset is 
employed whereas when WQI-SA is given the result is observed as 0.15. The root mean 
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squared error is observed as 0.525 while employing the WQI-PCA dataset and 0.18 error when 
using the WQI-SA dataset for evaluation results of RNN. The R2 score value is observed as 
0.82 while using WQI-PCA dataset and it is 0.84 when employing the WQI-SA dataset with 
the RNN algorithm.   

Similarly, the experimental results of LSTM-based WQI prediction models trained with two 
datasets WQI-PCA and WQI-SA are examined. It is observed that the mean absolute error is 
0.483 for the WQI-PCA dataset and 0.046 when the WQI-SA dataset is used. The root mean 
squared error is observed as 0.583 while employing the WQI-PCA dataset and a 0.1 error rate 
when using the WQI-SA dataset for WQI prediction.  The R2 score value is observed as 0.852 
while using the WQI-PCA dataset and it is 0.9 when employing the WQI-SA dataset for 
building the LSTM-based WQI prediction model. 

It is observed that the prediction results of GRU-based WQI models show different error rates 
with different datasets. The mean absolute error is found to be 0.364 when WQI-PCA is 
employed and when WQI-SA is used it gives a 0.134 error rate. Similarly, the root mean 
squared error is found to be 0.121 with the WQI-PCA dataset and 0.0576 with the WQI-SA 
dataset. The R2 score value is found to be 0.88 when the WQI-PCA dataset is trained and the 
WQI-SA dataset is trained in the GRU network, the R2 score is obtained as 0.88. 

From the performance results, it is observed that the GRU-based prediction model using WQI-
PCA dataset gives less error rate and a high R2 score value. The LSTM-based WQI prediction 
model using the WQI-SA dataset shows high R2 score values and fewer error rates with metrics 
like mean absolute error, mean squared error and root mean squared error.  

The comparative performance of WQI prediction models based on two different datasets such 
as WQI-PCA and WQI-SA is shown in Table 9 and illustrated in Fig. 5. 

Table 9.  Comparative Performance of Models Based on Two Datasets 

Dataset Algorithm MAE MSE RMSE 
R2 

Score 

WQI-
PCA 

RNN-WQI 0.496 0.275 0.525 0.828 

LSTM-WQI 0.483 0.339 0.583 0.852 

GRU-WQI 0.364 0.121 0.348 0.885 

WQI-SA 

RNN-WQI 0.15 0.0324 0.18 0.84 
LSTM-WQI 0.046 0.01 0.1 0.9 

GRU-WQI 0.134 0.0576 0.24 0.88 
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Fig 5. Overall Comparative Analysis of WQI Prediction Models 

The investigations made in this research proved that the machine learning approach is useful 
for developing predictive models like water quality index prediction. It is confirmed that the 
recent deep learning approach improves the prediction accuracy of different WQI predictive 
models. Through feature selection, the association between the pool of predictors and the 
targeted variable is strengthened which enables deep neural network architectures GRU, 
LSTM, and RNN to improve the learning of trends in the data. The prediction rate of WQI 
models is increased through learning the self-extracted features in GRU, LSTM, and RNN 
networks. The error rate of trained models is decreased by properly configuring the 
hyperparameters during network training.  The addition of seasonal parameters in the time 
series data enhances the quality of WQI prediction as they are more influential in water quality 
determination. The enhanced water quality prediction model with seasonal time series data has 
proven to be an effective tool in predicting water quality in different locations. 

5. Conclusion
This study demonstrated the importance of seasonal data in building WQI prediction models.
The application of deep learning architectures for river water quality time series forecasting
was attempted to prove that deep learning is an effective approach for accurate WQI prediction.
The seasonal data collected from the visual crossing site during the period 2016 to 2020 were
pooled with the physiochemical parameters of river water collected from the Bhavani River
and a new time series dataset was developed. The river water quality forecasting model has
been designed and developed using deep learning architectures such as LSTM, RNN and GRU.
The performance of the new models was evaluated and compared with the prediction results of
models trained with only physiochemical parameters. From the evaluation results, it is
observed that the augmentation of seasonal data enhanced the efficiency of the water quality
prediction model. A generalized model has been developed, which can be used in predicting
the water quality of any river.  The developed model can even be used as the pre-trained model
for applying transfer learning.
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