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ABSTRACT:  
This study unveils patterns of positive integer solutions for limited number of explicit binary 
quadratic equations encompassing Jacobsthal and Jacobsthal-Lucas numbers by means of the 
pertinent features connecting these two numbers and the notions of divisibility. 
KEYWORDS: quadratic Diophantine equations, Jacobsthal and Jacobsthal-Lucas numbers 
INTRODUCTION: 
In [7, 8, 9], the authors scrutinized various Diophantine equations using generalized Fibonacci 
and Lucas sequences. In [9], the writers premeditated the specific Diophantine equation 𝑥 −

𝑘𝑥𝑦 + 𝑦 + 𝑥 = 0. In [19], Pingzhi Yuan, Yongzhong discoursed on the quadratic 
Diophantine equation with two variables 𝑥  −  𝑘𝑥𝑦 +  𝑦  +  𝑙𝑥 =  0, when 𝑙 ∈  {1, 2, 4}.  
[1-6,10-18] may be referred for a comprehensive evaluation. In this communication, sequences 
of non-negative integer solutions for restricted number of quadratic equations with double 
variables 𝑋 − 𝑋𝑌 − 2𝑌 = ±𝐶, 𝑋 − 5𝑋𝑌 ± 4𝑌 = ±𝐶, 𝑋 − 𝑋𝑌 − 2𝑌 ± 𝐶𝑋 = 0, 𝑋 −

𝑋𝑌 − 2𝑌 ± 𝐶𝑌 = 0, 𝑋 − 5𝑋𝑌 − 4𝑌 ± 𝐶𝑋 = 0, 𝑋 − 5𝑋𝑌 − 4𝑌 ± 𝐶𝑌 = 0, 𝑋 − 𝑋𝑌 −

2𝑌 = ±9𝐶, 𝑋 − 𝑋𝑌 − 2𝑌 ± 9𝐶𝑋 = 0, 𝑋 − 𝑋𝑌 − 2𝑌 ± 9𝐶𝑌 = 0,  𝑋 − 5𝑋𝑌 + 4𝑌 =

±9𝐶, 𝑋 − 5𝑋𝑌 + 4𝑌 ± 9𝐶𝑋 = 0 and 𝑋 − 5𝑋𝑌 + 4𝑌 ± 9𝐶𝑌 = 0 where 𝐶 is a fixed 
constant which is some powers of the number 2 encircling Jacobsthal and Jacobsthal-Lucas 
numbers are investigated by utilizing the appropriate erections connecting these two numbers 
and the concepts of divisibility. 
Needed Theorems: 
Theorem: [I]  
For each integer 𝑛 > 1, there exists primes 𝑝 ≤ 𝑝 ≤ ⋯ ≤ 𝑝   such that 𝑛 = 𝑝 𝑝 … 𝑝  ,this 
factorization is unique. 
Theorem: [II] 
If positive integers 𝑥, 𝑦, 𝑎, 𝑏, 𝑐 with 𝑔𝑐𝑑(𝑥, 𝑐) = 1 satisfying the equations 

𝑥 − 𝑎𝑥𝑦 − 𝑏𝑦 ± 𝑐𝑥 = 0                                                                
then 𝑥 = 𝑢  and 𝑦 = 𝑢𝑣 for some positive integers 𝑢 and 𝑣.  
If positive integers 𝑥, 𝑦, 𝑝, 𝑞, 𝑟 with 𝑔𝑐𝑑(𝑦, 𝑟) = 1 satisfying the equations  
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𝑥 − 𝑎𝑥𝑦 − 𝑏𝑦 ± 𝑐𝑦 = 0         
  
 then 𝑦 = 𝑢  and 𝑥 = 𝑢𝑣 for some positive integers 𝑢 and 𝑣 
PRIMARY CONSEQUENCES: 
     The 𝑛  Jacobsthal number designated by 𝐽  is delineated by 𝐽 = 𝐽 + 2𝐽 , for 𝑛 ≥ 2 
where  𝐽 = 0, 𝐽 = 1. If 𝛼, 𝛽 are two roots of the equation 𝑥 − 𝑥 − 2 = 0, then 𝛼 = −1, 𝛽 =

2 such that 𝛼𝛽 = −2 and 𝛼 + 𝛽 = 2. Furthermore, it is well- recognized and modest to reveal 
the characteristics that 𝛼 = 𝐽 − 𝛽𝐽  and 𝛽 = 𝐽 − 𝛼𝐽  for every 𝑛 ∈ ℤ, the set of 

all integers. Also, it might be declared by Mathematical induction that  𝐽 − 𝐽 𝐽 −

2𝐽 = (−2)   ∀𝑛 ∈ ℤ.            (1) 

     Similarly, the 𝑛  Jacobsthal-Lucas number 𝑗  is described as 𝑗 = 𝑗 + 2𝑗  for 𝑛 ≥

2 and 
 𝑗 = 2, 𝑗 = 1. The interrelation between Jacobsthal and Jacobsthal-Lucas numbers are 
approved as follows 

1. 𝑗 = 𝐽 + 2𝐽  for every 𝑛 ∈ ℤ. 

2. 𝑗 − 𝑗 𝑗 − 2𝑗 = −9(−2)  for every 𝑛 ∈ ℤ    
 (2) 

Theorem: 1 
The constitutive criterion for all non-negative integer solutions to the specific second-degree 
equation involving two variables 𝑋 − 𝑋𝑌 − 2𝑌 = 𝐶(−1)  is (𝑋, 𝑌, 𝐶) = (𝐽 , 𝐽 , 2 ) 
with 𝑛 ≥ 1. 
Proof: 
If  (𝑋, 𝑌, 𝐶) = (𝐽 , 𝐽 , 2 ), then it follows from identity (1) that 𝑋 − 2𝑋𝑌 − 𝑌 =

𝐶(−1) . Conversely suppose that 𝑋 − 𝑋𝑌 − 2𝑌 = 𝐶(−1)  for some positive integers 
𝑋 , 𝑌 and 𝐶 = 2 .  
Then, (𝑋 − 𝛼𝑌)(𝑋 − 𝛽𝑌) = (𝛼𝛽) ⇒ (𝑋 − 𝛼𝑌)(𝑋 − 𝛽𝑌) = (𝐽 − 𝛽𝐽 )(𝐽 − 𝛼𝐽 ).  
Thus, 𝑋 − 𝛼𝑌 = 𝐽 − 𝛼𝐽  and hence (𝑋, 𝑌, 𝐶) = (𝐽 , 𝐽 , 2 ), 𝑛 ≥ 1. 
Corollary: 1.1 
The viable solutions to the certain quadratic equation 𝑋 − 𝑋𝑌 − 2𝑌 = 𝐶 are enumerated by 
(𝑋, 𝑌, 𝐶) = (𝐽 , 𝐽 , 2  ) , 𝑚 ≥ 0. 
Corollary: 1.2 
Every conceivable solution in Jacobsthal numbers of the equation 𝑋 − 𝑋𝑌 − 2𝑌 = −𝐶 are 
quantified by (𝑋, 𝑌, 𝐶) = (𝐽 , 𝐽 , 2  ) with 𝑚 ≥ 1. 
Theorem: 2 
The trustworthy integer solutions to the exact equation 𝑋 − 5𝑋𝑌 + 4𝑌 = 𝐶 are conquered 
by (𝑋, 𝑌, 𝐶) = (𝐽 , 𝐽 , 2 ) with 𝑛 ≥ 0. 
Proof: 
For our convenience, let us choose 𝑋 > 2𝑌  
Then, 𝑋 − 5𝑋𝑌 + 4𝑌 = 𝐶 ⇒ (𝑋 − 2𝑌) − (𝑋 − 2𝑌)𝑌 − 𝑌 = 𝐶 
By corollary 1.1, it should be 𝑋 − 2𝑌 = 𝐽  , 𝑌 = 𝐽  and 𝐶 = 2  
The first two of the above equations yields the value of 𝑋 as 𝑋 = 𝐽  
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Hence, the solutions to the required equation are mentioned by (𝑋, 𝑌, 𝐶) =

(𝐽 , 𝐽 , 2 ), 𝑛 ≥ 0. 
Corollary: 2.1 
The infinitely many positive integer solutions to the equation 𝑋 − 5𝑋𝑌 + 4𝑌 = −𝐶 are 
attained by (𝑋, 𝑌, 𝐶) = (𝐽 , 𝐽 , 2 ) with 𝑛 ≥ 1. 
Theorem: 3 
Let 𝑋, 𝑌 be any two natural numbers sustaining the equation 𝑋 − 𝑋𝑌 − 2𝑌 ± 𝐶𝑋 = 0, then 
𝑋 = 𝑈  and 𝑌 =  𝑈𝑉 where 𝑈, 𝑉 ∈ ℕ. 
Proof: 
Modify the original equation as 𝑋(𝑋 − 𝑌 ± 𝐶) = 2𝑌  
It is easy to see that 𝑋/𝑌  and hence 𝑌 = 𝑋𝑍 for some natural number 𝑍.  
If 𝑝 is any prime number such that 𝑝|𝑋 and 𝑝|Z, then 𝑝|𝑌  
This affords the expression 𝑋 − 𝑌 − 2𝑍 ± 𝐶 = 0 which guarantees that 𝑝|𝐶. 
Here, the only possible value of 𝑝 is 𝑝 = 2 which implies that 𝑋 = 2𝑋 , 𝑌 = 2𝑌  

Again, it grasps that 𝑋 − 𝑋 𝑌 − 2𝑌 ± 𝐶 𝑋 = 0 where 𝐶 = 𝐶/2. 
 
Enduring the same method as enlightened above till the constant 𝐶 vanishes, it is found that  

𝑋 − 𝑋 𝑌 − 2𝑌 ± 𝑋 = 0 

It follows that 𝑋 |𝑌  and hence 𝑌 = 𝑋 𝑍  for some positive integer 𝑍  
If a prime number 𝑝 satisfying the conditions 𝑝|𝑋  and 𝑝|𝑍 , then 𝑝|𝑌   
Then, it is detected that 𝑋 − 𝑌 − 2𝑍 ± 1 = 0 . 
This equation infers that 𝑝|1 which is not possible. 
Therefore, 𝑔𝑐𝑑(𝑋, 𝑍) = 1. 
By the needed theorem [I] stated above, it is noted that 𝑋 = 𝑈  and 𝑍 = 𝑉  for some positive 
integers 𝑈 and 𝑉 where gcd(𝑈, 𝑉) = 1.  
Hence, it is concluded that 𝑌 = 𝑋𝑍 = 𝑈 𝑉 ⇒ 𝑌 = 𝑈𝑉. 
Corollary: 3.1 
The probable values of 𝑋, 𝑌 in the equation 𝑋 − 𝑋𝑌 − 2𝑌 + 𝐶𝑋 = 0 are given by 

(𝑋, 𝑌, 𝐶) = 𝐽 , 𝐽  𝐽 , 2  , 𝑛 ≥ 1. 

Corollary: 3.2 
The realistic solutions in Jacobsthal numbers to the equation 𝑋 − 𝑋𝑌 − 2𝑌 − 𝐶𝑋 = 0 are 

computed by  (𝑋, 𝑌, 𝐶) = 𝐽 , 𝐽  𝐽 , 2  , 𝑛 ≥ 0. 

Theorem: 4 
If 𝑋, 𝑌 be any two positive integers such that 𝑋 − 𝑋𝑌 − 2𝑌 ± 𝐶𝑌 = 0, then 𝑋 = 𝑈𝑉 and 𝑌 =

𝑈  for some positive integers 𝑈 and 𝑉 with gcd(𝑈, 𝑉) = 1. 
Proof: 
The proof is analogous to Theorem 3. 
Corollary: 4.1 
The convincing integer values of 𝑋, 𝑌 in the equation 𝑋 − 𝑋𝑌 − 2𝑌 + 𝐶𝑌 = 0 are resolved 
by 

(𝑋, 𝑌, 𝐶) = 𝐽  𝐽 , 𝐽 , 2 , 𝑛 ≥ 1. 

Corollary: 4.2 
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The conventional solutions to the quadratic equation 𝑋 − 𝑋𝑌 − 2𝑌 − 𝐶𝑌 = 0 are 

particularized by  (𝑋, 𝑌, 𝐶) = 𝐽  𝐽  , 𝐽 , 2 , 𝑛 ≥ 0. 

Theorem: 5 
The patterns of non-negative integer solutions to the equation 𝑋 − 5𝑋𝑌 + 4𝑌 + 𝐶𝑋 = 0 are 

exemplified by (𝑋, 𝑌, 𝐶) = 𝐽 , 𝐽 𝐽 , 2  where 𝑛 ≥ 1. 

Proof: 
Let 𝑋, 𝑌 be two non-negative integers such that 𝑋 − 5𝑋𝑌 + 4𝑌 + 𝐶𝑋 = 0. 
The alteration of the above equation 4𝑌 = 𝑋(5𝑌 − 𝑋 − 𝐶) ensures that 𝑋 divides 𝑌 and 
henceforth 𝑌 = 𝑋𝑍 for some non-negative integer 𝑍.  
Suppose that a certain prime number 𝑝 divides both 𝑋 and 𝑍. 
Then 𝑝|𝑌 and also the relation 𝑋 − 6𝑌 + 4𝑍 + 𝐶 = 0 holds for all 𝑋, 𝑌 ∈ ℤ , the set of all 
positive integers. 
Thus, 𝑝 divides 𝐶 and the chance of such 𝑝 is 𝑝 = 2 . 
This condition confirms that 𝑋 = 2𝑋 , 𝑌 = 2𝑌  for some 𝑋 , 𝑌 ∈  ℤ  and perceptibly the 

equation in which solutions to be evaluated is converted into 𝑋 − 5𝑋 𝑌 + 4𝑌 + 𝐶 𝑋 = 0 

where 𝐶 = 𝐶/2. By the argument as explained above,  𝑋 |𝑌  and hence 𝑌 = 𝑋 𝑍  for some 
𝑍 ∈ ℤ .  
Again, if 𝑝|𝑋  and 𝑝|𝑍 , then 𝑝|𝑌  and the precise relation 𝑋 − 5𝑌 + 4𝑍 + 𝐶 = 0 is also 
true for all 𝑋 , 𝑌 ∈ ℤ .    

Carrying on this procedure till the equation 𝑋 − 5𝑋 𝑌 + 4𝑌 + 𝑋 = 0 is reached. 
Further if 𝑝|𝑋  and 𝑝|𝑍 , then 𝑝|𝑌  and the accurate equation  𝑋 − 5𝑌 + 4𝑍 + 1 = 0 is 
detected for all 𝑋 , 𝑌 ∈ ℤ .  
Finally, 𝑝 divides 1 which is impossible.  
As a result, our supposition that 𝑋 and 𝑍 have common divisors is erroneous. This shows that 
that 𝑔𝑐𝑑(𝑋, 𝑍) = 1.  
Thus, by the necessary and sufficient condition that the product two coprime numbers should 
be a perfect square if and only if each of them is a perfect square,  𝑋 = 𝑃  and 𝑍 = 𝑄  where 
𝑃, 𝑄 ∈ ℤ  and gcd(𝑃, 𝑄) = 1.  
These adoptions of 𝑋 and 𝑍 provides that 𝑌 = 𝑃𝑄 and subsequently the essential equation can 
be developed into 𝑃 − 5𝑃𝑄 + 4𝑅 + 𝐶 = 0. 
By Corollary 2.1, the values of 𝑃, 𝑄 and 𝐶 are searched by (𝑃, 𝑄, 𝐶) = (𝐽 , 𝐽 , 2 ) 

and therefore (𝑋, 𝑌, 𝐶) = 𝐽 , 𝐽 𝐽 , 2 , 𝑛 ≥ 1. 

Corollary: 5.1 
The non-negative integer solutions for the equation 𝑋 − 5𝑋𝑌 + 4𝑌 − 𝐶𝑋 = 0 are 

symbolized by (𝑋, 𝑌, 𝐶) = 𝐽 , 𝐽 𝐽 , 2  where 𝑛 ≥ 0. 

 
Theorem: 6 

(i) The patterns of positive integer solutions to the equation 𝑋 − 5𝑋𝑌 + 4𝑌 + 𝐶𝑌 = 0 

are incarnated by (𝑋, 𝑌, 𝐶) = 𝐽 𝐽 , 𝐽 , 2  where 𝑛 ≥ 1. 

(ii) The infinitely several positive integer solutions to the equation 𝑋 − 5𝑋𝑌 + 4𝑌 −

𝐶𝑌 = 0 are signified by (𝑋, 𝑌, 𝐶) = 𝐽 𝐽 , 𝐽 , 2  where 𝑛 ≥ 0. 

Theorem: 7 



CONCEPTION OF POSITIVE INTEGER SOLUTIONS RELATING JACOBSTHAL AND JACOBSTHAL – LUCAS NUMBERS TO RESTRICTED 
NUMBER OF QUADRATIC EQUATIONS WITH DOUBLE VARIABLES 

Journal of Data Acquisition and Processing Vol. 38 (1) 2023      2205 
 

The feasible solution in Jacobsthal-Lucas numbers for two unlike binary quadratic equations  
𝑋 − 𝑋𝑌 − 2𝑌 = 9𝐶 and 𝑋 − 𝑋𝑌 − 2𝑌 = −9𝐶 are presented by (𝑋, 𝑌, 𝐶) = (𝑗 ,

𝑗 , 2 ) , 𝑛 ≥ 1 and (𝑋, 𝑌, 𝐶) = (𝑗 , 𝑗 , 2 ), 𝑛 ≥ 0 respectively. 
Theorem: 8 
Let 𝑋, 𝑌 be two distinct natural numbers.  

(i) If 𝑋 − 5𝑋𝑌 + 4𝑌 = 9𝐶, then (𝑋, 𝑌, 𝐶) = (𝑗 , 𝑗 , 2 ) , 𝑛 ≥ 1. 
(ii) If 𝑋 − 5𝑋𝑌 + 4𝑌 = −9𝐶, then (𝑋, 𝑌, 𝐶) = (𝑗 , 𝑗 , 2 ) , 𝑛 ≥ 0. 

Theorem: 9 
If 𝑋 , 𝑌 be any two non-negative integers such that 𝑋 − 𝑋𝑌 − 2𝑌 + 9𝐶𝑋 = 0, then either                       

(𝑋, 𝑌, 𝐶) = 9𝐽 , 9𝐽 𝐽 , 2 , 𝑛 ≥ 1 or (𝑋, 𝑌, 𝐶) = 𝑗 , 𝑗 𝑗 , 2  , 𝑛 ≥ 0. 

Proof: 
Assume that 𝑋 − 𝑋𝑌 − 2𝑌 + 9𝐶𝑋 = 0 for some non-negative integers 𝑋 and 𝑌.  
If 9|𝑋, then 9|𝑌 ⇒ 𝑋 = 9𝑈 and  𝑌 = 9𝑉 for some 𝑈, 𝑉 ∈ ℤ   
Therefore, the needed equation in two unknowns 𝑋 and 𝑌 is enhanced in terms of 𝑈 and 𝑉 as 
𝑈 − 𝑈𝑉 − 2𝑉 + 𝐶𝑈 = 0.  

By theorem 4, (𝑈, 𝑉, 𝐶) = 𝐽 , 𝐽 𝐽 , 2  ⇒ (𝑋, 𝑌, 𝐶) = 9𝐽 , 9𝐽 𝐽 , 2 .  

If 9 ∤ 𝑋, then by theorem [II],  𝑋 = 𝑈  and  𝑌 = 𝑈𝑉.  
These choices of  𝑈 and 𝑉 simplifies the considered equation into 𝑈 − 𝑈𝑉 − 2𝑉 + 9𝐶 = 0.  
By theorem 7, it is resolved that    

(𝑈, 𝑉, 𝐶) = (𝑗 , 𝑗 , 2 )  ⟹ (𝑋, 𝑌, 𝐶) = 𝑗 , 𝑗 𝑗 , 2  where 𝑛 ≥ 0. 

Conversely if (𝑋, 𝑌, 𝐶) = 9𝐽 , 9𝐽 𝐽 , 2 , then by the implementation of corollary 1.2  

𝑋 − 𝑋𝑌 − 2𝑌 + 9𝐶𝑋 = 9𝐽 − 9𝐽 (   9𝐽 𝐽 ) − 2(   9𝐽 𝐽 ) + 9𝐶 9𝐽   

      = 81𝐽 𝐽 − 𝐽 𝐽 − 𝐽 + 𝐶 = 0,  

Likewise, the very same equation might well be fulfilled for (𝑋, 𝑌, 𝐶) =

𝑗 , 𝑗 𝑗 , 2 . 

Theorem: 10 
Let 𝑋, 𝑌 ∈ ℤ , the set of all positive integers. 

(i)  If 𝑋 − 𝑋𝑌 − 2𝑌 − 9𝐶𝑋 = 0, then either (𝑋, 𝑌, 𝐶) =

9𝐽 , 9𝐽 𝐽 , 2 , 𝑛 ≥ 0 or (𝑋, 𝑌, 𝐶) = 𝑗 , 𝑗 𝑗 , 2  , 𝑛 ≥ 1. 

(ii) If 𝑋 − 𝑋𝑌 − 2𝑌 + 9𝐶𝑌 = 0, then either (𝑋, 𝑌, 𝐶) =

 9𝐽 𝐽 , 9𝐽 , 2 , 𝑛 ≥ 1 or (𝑋, 𝑌, 𝐶) = 𝑗 𝑗 , 𝑗 , 2  , 𝑛 ≥ 0. 

(iii) If 𝑋 − 𝑋𝑌 − 2𝑌 − 9𝐶𝑌 = 0, then either (𝑋, 𝑌, 𝐶) =  9𝐽 𝐽 , 9𝐽 , 2  , 

𝑛 ≥ 0 or (𝑋, 𝑌, 𝐶) = 𝑗 𝑗 , 𝑗 , 2  , 𝑛 ≥ 1. 

Theorem: 11 
Let 𝑋, 𝑌 be two distinct non-negative integers. Then 

(i) The two different set non-negative integer solutions to the equation 𝑋 − 5𝑋𝑌 +

4𝑌 + 9𝐶𝑋 = 0 are discovered by (𝑋, 𝑌, 𝐶) = 9𝐽 , 9𝐽 𝐽 , 2  , 𝑛 ≥

1 and (𝑋, 𝑌, 𝐶) = 𝑗 , 𝑗 𝑗 , 2 , 𝑛 ≥ 0. 

(ii) All possible solutions in Jacobsthal and Jacobsthal -Lucas numbers to the equation           
𝑋 − 5𝑋𝑌 + 4𝑌 − 9𝐶𝑋 = 0 are determined by (𝑋, 𝑌, 𝐶) =
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9𝐽 , 9𝐽 𝐽 , 2 , 𝑛 ≥ 0 and (𝑋, 𝑌, 𝐶) = 𝑗 , 𝑗 𝑗 , 2  , 𝑛 ≥

1. 
(iii) If 𝑋 − 5𝑋𝑌 + 4𝑌 + 9𝐶𝑌 = 0, then two sequences of solutions are presented by 

(𝑋, 𝑌, 𝐶) = 9𝐽 𝐽 , 9𝐽 , 2 , 𝑛 ≥ 0 and (𝑋, 𝑌, 𝐶) =

𝑗 𝑗 , 𝑗 , 2  , 𝑛 ≥ 1. 

(iv) If 𝑋 − 5𝑋𝑌 + 4𝑌 − 9𝐶𝑌 = 0, then either (𝑋, 𝑌, 𝐶) =  9𝐽 𝐽 , 9𝐽 , 2 , 

𝑛 ≥ 1 or (𝑋, 𝑌, 𝐶) = 𝑗 𝑗 , 𝑗 , 2  , 𝑛 ≥ 0. 

CONCLUSION: 
In this article, the generic solutions to a specific set of unambiguous binary quadratic equations 
are revealed in terms of Jacobsthal and Jacobsthal-Lucas numbers. In this manner, one may 
explore solutions to some cubic or higher degree Diophantine equations having more than two 
variables concerning other periodic sequences of integers. 
 
REFERENCES: 
[1] Andreescu, Titu, and Dorin Andrica. "Why Quadratic Diophantine 

Equations?." Quadratic Diophantine Equations. Springer, New York, NY, 2015. 1-8. 
[2] Bender, Edward A., and Norman P. Herzberg. "Some Diophantine equations related to 

the quadratic form ax2+ by2." AMERICAN MATHEMATICAL SOCIETY 81.1 (1975). 
[3] Campos, H., et al. "On some identities of k-Jacobsthal-Lucas numbers." rn 2 (2014): 5.  
[4] Hardy, Godfrey Harold, and Edward Maitland Wright. An introduction to the theory of 

numbers. Oxford university press, 1979.  
[5] Jhala, Deepika, Kiran Sisodiya, and G. P. S. Rathore. "On some identities for k-

Jacobsthal numbers." Int. J. Math. Anal.(Ruse) 7.12 (2013): 551-556.  
[6] Kalman, Dan, and Robert Mena. "The Fibonacci numbers—exposed." Mathematics 

magazine 76.3 (2003): 167-181.  
[7] Keskin, Refik, and Bahar Demirtürk. "Solutions of Some Diophantine Equations Using 

Generalized Fibonacci and Lucas Sequences." Ars Comb. 111 (2013): 161-179.  
[8] Keskin, Refik, Olcay Karaatlı, and Zafer Yosma. "On the Diophantine equation x^ 2-

kxy+ y^ 2+ 2^ n= 0." Miskolc Mathematical Notes 13.2 (2012): 375-388.  
[9] Keskin, Refik. "Solutions of some quadratic Diophantine equations." Computers & 

Mathematics with Applications 60.8 (2010): 2225-2230.  
[10] Koken, Fikri, and Durmus Bozkurt. "On the Jacobsthal-Lucas numbers by matrix 

methods." Int. J. Contemp. Math. Sciences 3.33 (2008): 1629-1633. 
[11] Koshy, Thomas. Fibonacci and Lucas Numbers with Applications, Volume 2. John 

Wiley & Sons, 2019. 
[12] Marlewski, A., and Piotr Zarzycki. "Infinitely many positive solutions of the 

Diophantine equation x2− kxy+ y2+ x= 0." Computers & Mathematics with 
Applications 47.1 (2004): 115-121.  

[13] McDanlel, Wayne L. "Diophantine representation of Lucas sequences." (1993).  
[14] Melham, Ray. "Conics which characterize certain Lucas sequences." Fibonacci 

Quarterly (1997). 



CONCEPTION OF POSITIVE INTEGER SOLUTIONS RELATING JACOBSTHAL AND JACOBSTHAL – LUCAS NUMBERS TO RESTRICTED 
NUMBER OF QUADRATIC EQUATIONS WITH DOUBLE VARIABLES 

Journal of Data Acquisition and Processing Vol. 38 (1) 2023      2207 
 

[15] Mollin, Richard A. "Quadratic Diophantine Equations x2--Dy2= cn." Bulletin of the Irish 
Mathematical Society 58 (2006). 

[16] Niven, Ivan. "Quadratic Diophantine equations in the rational and quadratic 
fields." Transactions of the American Mathematical Society 52.1 (1942): 1-11. 

[17] Sandhya, P., Pandichelvi, V., “Assessment of Solutions in Pell and Pell-Lucas Numbers 
to Disparate Polynomial Equation of Degree Two.” Wesleyan Journal of Research, 14 
(2021) 129- 134.    

[18] Yoshinaga, Takashi. "On the solutions of quadratic Diophantine 
equations." Documenta Mathematica 15 (2010): 347-385. 

[19] Yuan, Pingzhi, and Yongzhong Hu. "On the Diophantine equation x2− kxy+ y2+ lx= 0, 
l∈{1, 2, 4}." Computers & Mathematics with Applications 61.3 (2011): 573-577.  

 


