CONCEPTION OF POSITIVE INTEGER SOLUTIONS RELATING JACOBSTHAL AND JACOBSTHAL - LUCAS NUMBERS TO RESTRICTED NUMBER OF QUADRATIC EQUATIONS WITH DOUBLE VARIABLES

P. Sandhya ${ }^{1}$, V. Pandichelvi ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, SRM Trichy Arts and Science College, Trichy (Affiliated to Bharathidasan University)
\section*{Email: sandhyaprasad2684@gmail.com}
${ }^{2}$ Assistant Professor, PG \& Research Department of Mathematics, Urumu Dhanalakshmi College, Trichy. (Affiliated to Bharathidasan University)
Email: mvpmahesh2017@gmail.com

Abstract

: This study unveils patterns of positive integer solutions for limited number of explicit binary quadratic equations encompassing Jacobsthal and Jacobsthal-Lucas numbers by means of the pertinent features connecting these two numbers and the notions of divisibility. KEYWORDS: quadratic Diophantine equations, Jacobsthal and Jacobsthal-Lucas numbers INTRODUCTION: In [7, 8, 9], the authors scrutinized various Diophantine equations using generalized Fibonacci and Lucas sequences. In [9], the writers premeditated the specific Diophantine equation $x^{2}-$ $k x y+y^{2}+x=0$. In [19], Pingzhi Yuan, Yongzhong discoursed on the quadratic Diophantine equation with two variables $x^{2}-k x y+y^{2}+l x=0$, when $l \in\{1,2,4\}$. [1-6,10-18] may be referred for a comprehensive evaluation. In this communication, sequences of non-negative integer solutions for restricted number of quadratic equations with double variables $X^{2}-X Y-2 Y^{2}= \pm C, X^{2}-5 X Y \pm 4 Y^{2}= \pm C, X^{2}-X Y-2 Y^{2} \pm C X=0, X^{2}-$ $X Y-2 Y^{2} \pm C Y=0, X^{2}-5 X Y-4 Y^{2} \pm C X=0, X^{2}-5 X Y-4 Y^{2} \pm C Y=0, \quad X^{2}-X Y-$ $2 Y^{2}= \pm 9 C, X^{2}-X Y-2 Y^{2} \pm 9 C X=0, X^{2}-X Y-2 Y^{2} \pm 9 C Y=0, X^{2}-5 X Y+4 Y^{2}=$ $\pm 9 C, X^{2}-5 X Y+4 Y^{2} \pm 9 C X=0$ and $X^{2}-5 X Y+4 Y^{2} \pm 9 C Y=0$ where C is a fixed constant which is some powers of the number 2 encircling Jacobsthal and Jacobsthal-Lucas numbers are investigated by utilizing the appropriate erections connecting these two numbers and the concepts of divisibility.

Needed Theorems:

Theorem: [I]

For each integer $n>1$, there exists primes $p_{1} \leq p_{2} \leq \cdots \leq p_{r}$ such that $n=p_{1} p_{2} \ldots p_{r}$, this factorization is unique.

Theorem: [II]

If positive integers x, y, a, b, c with $\operatorname{gcd}(x, c)=1$ satisfying the equations

$$
x^{2}-a x y-b y^{2} \pm c x=0
$$

then $x=u^{2}$ and $y=u v$ for some positive integers u and v.
If positive integers x, y, p, q, r with $\operatorname{gcd}(y, r)=1$ satisfying the equations

$$
x^{2}-a x y-b y^{2} \pm c y=0
$$

then $y=u^{2}$ and $x=u v$ for some positive integers u and v

PRIMARY CONSEQUENCES:

The $n^{\text {th }}$ Jacobsthal number designated by J_{n} is delineated by $J_{n}=J_{n-1}+2 J_{n-2}$, for $n \geq 2$ where $J_{0}=0, J_{1}=1$. If α, β are two roots of the equation $x^{2}-x-2=0$, then $\alpha=-1, \beta=$ 2 such that $\alpha \beta=-2$ and $\alpha+\beta=2$. Furthermore, it is well- recognized and modest to reveal the characteristics that $\alpha^{n-1}=J_{n}-\beta J_{n-1}$ and $\beta^{n-1}=J_{n}-\alpha J_{n-1}$ for every $n \in \mathbb{Z}$, the set of all integers. Also, it might be declared by Mathematical induction that $J_{n}{ }^{2}-J_{n} J_{n-1}-$ $2 J_{n-1}{ }^{2}=(-2)^{n-1} \forall n \in \mathbb{Z}$.

Similarly, the $n^{\text {th }}$ Jacobsthal-Lucas number j_{n} is described as $j_{n}=j_{n-1}+2 j_{n-2}$ for $n \geq$ 2 and
$j_{0}=2, j_{1}=1$. The interrelation between Jacobsthal and Jacobsthal-Lucas numbers are approved as follows

1. $j_{n}=J_{n+1}+2 J_{n-1}$ for every $n \in \mathbb{Z}$.
2. $j_{n}{ }^{2}-j_{n} j_{n-1}-2 j_{n-1}{ }^{2}=-9(-2)^{n-1}$ for every $n \in \mathbb{Z}$

Theorem: 1

The constitutive criterion for all non-negative integer solutions to the specific second-degree equation involving two variables $X^{2}-X Y-2 Y^{2}=C(-1)^{n-1}$ is $(X, Y, C)=\left(J_{n}, J_{n-1}, 2^{n-1}\right)$ with $n \geq 1$.

Proof:

If $(X, Y, C)=\left(J_{n}, J_{n-1}, 2^{n-1}\right)$, then it follows from identity (1) that $X^{2}-2 X Y-Y^{2}=$ $C(-1)^{n-1}$. Conversely suppose that $X^{2}-X Y-2 Y^{2}=C(-1)^{n-1}$ for some positive integers X, Y and $C=2^{n-1}$.
Then, $(X-\alpha Y)(X-\beta Y)=(\alpha \beta)^{n-1} \Rightarrow(X-\alpha Y)(X-\beta Y)=\left(J_{n}-\beta J_{n-1}\right)\left(J_{n}-\alpha J_{n-1}\right)$.
Thus, $X-\alpha Y=J_{n}-\alpha J_{n-1}$ and hence $(X, Y, C)=\left(J_{n}, J_{n-1}, 2^{n-1}\right), n \geq 1$.

Corollary: $\mathbf{1 . 1}$

The viable solutions to the certain quadratic equation $X^{2}-X Y-2 Y^{2}=C$ are enumerated by $(X, Y, C)=\left(J_{2 m+1}, J_{2 m}, 2^{2 m}\right), m \geq 0$.

Corollary: 1.2

Every conceivable solution in Jacobsthal numbers of the equation $X^{2}-X Y-2 Y^{2}=-C$ are quantified by $(X, Y, C)=\left(J_{2 m}, J_{2 m-1}, 2^{2 m-1}\right)$ with $m \geq 1$.
Theorem: 2
The trustworthy integer solutions to the exact equation $X^{2}-5 X Y+4 Y^{2}=C$ are conquered by $(X, Y, C)=\left(J_{2 n+2}, J_{2 n}, 2^{2 n}\right)$ with $n \geq 0$.

Proof:

For our convenience, let us choose $X>2 Y$
Then, $X^{2}-5 X Y+4 Y^{2}=C \Rightarrow(X-2 Y)^{2}-(X-2 Y) Y-Y^{2}=C$
By corollary 1.1, it should be $X-2 Y=J_{2 n+1}, Y=J_{2 n}$ and $C=2^{2 n}$
The first two of the above equations yields the value of X as $X=J_{2 n+2}$

Hence, the solutions to the required equation are mentioned by $(X, Y, C)=$ $\left(J_{2 n+2}, J_{2 n}, 2^{2 n}\right), n \geq 0$.

Corollary: $\mathbf{2 . 1}$

The infinitely many positive integer solutions to the equation $X^{2}-5 X Y+4 Y^{2}=-C$ are attained by $(X, Y, C)=\left(J_{2 n+1}, J_{2 n-1}, 2^{2 n-1}\right)$ with $n \geq 1$.
Theorem: 3
Let X, Y be any two natural numbers sustaining the equation $X^{2}-X Y-2 Y^{2} \pm C X=0$, then $X=U^{2}$ and $Y=U V$ where $U, V \in \mathbb{N}$.
Proof:
Modify the original equation as $X(X-Y \pm C)=2 Y^{2}$
It is easy to see that X / Y^{2} and hence $Y^{2}=X Z$ for some natural number Z.
If p is any prime number such that $p \mid X$ and $p \mid \mathrm{Z}$, then $p \mid Y$
This affords the expression $X-Y-2 Z \pm C=0$ which guarantees that $p \mid C$.
Here, the only possible value of p is $p=2$ which implies that $X=2 X_{1}, Y=2 Y_{1}$
Again, it grasps that $X_{1}{ }^{2}-X_{1} Y_{1}-2 Y_{1}{ }^{2} \pm C_{1} X_{1}=0$ where $C_{1}=C / 2$.
Enduring the same method as enlightened above till the constant C vanishes, it is found that
$X_{n}{ }^{2}-X_{n} Y_{n}-2 Y_{n}{ }^{2} \pm X_{n}=0$
It follows that $X_{n} \mid Y_{n}{ }^{2}$ and hence $Y_{n}{ }^{2}=X_{n} Z_{n}$ for some positive integer Z_{n}
If a prime number p satisfying the conditions $p \mid X_{n}$ and $p \mid Z_{n}$, then $p \mid Y_{n}$
Then, it is detected that $X_{n}-Y_{n}-2 Z_{n} \pm 1=0$.
This equation infers that $p \mid 1$ which is not possible.
Therefore, $\operatorname{gcd}(X, Z)=1$.
By the needed theorem [I] stated above, it is noted that $X=U^{2}$ and $Z=V^{2}$ for some positive integers U and V where $\operatorname{gcd}(U, V)=1$.
Hence, it is concluded that $Y^{2}=X Z=U^{2} V^{2} \Rightarrow Y=U V$.

Corollary: $\mathbf{3 . 1}$

The probable values of X, Y in the equation $X^{2}-X Y-2 Y^{2}+C X=0$ are given by $(X, Y, C)=\left(J_{2 n}{ }^{2}, J_{2 n} J_{2 n-1}, 2^{2 n-1}\right), n \geq 1$.

Corollary: 3.2

The realistic solutions in Jacobsthal numbers to the equation $X^{2}-X Y-2 Y^{2}-C X=0$ are computed by $(X, Y, C)=\left(J_{2 n+1}{ }^{2}, J_{2 n+1} J_{2 n}, 2^{2 n}\right), n \geq 0$.

Theorem: 4

If X, Y be any two positive integers such that $X^{2}-X Y-2 Y^{2} \pm C Y=0$, then $X=U V$ and $Y=$ U^{2} for some positive integers U and V with $\operatorname{gcd}(U, V)=1$.

Proof:

The proof is analogous to Theorem 3.

Corollary: 4.1

The convincing integer values of X, Y in the equation $X^{2}-X Y-2 Y^{2}+C Y=0$ are resolved by
$(X, Y, C)=\left(J_{2 n} J_{2 n-1}, J_{2 n-1}{ }^{2}, 2^{2 n-1}\right), n \geq 1$.

Corollary: 4.2

The conventional solutions to the quadratic equation $X^{2}-X Y-2 Y^{2}-C Y=0$ are particularized by $(X, Y, C)=\left(J_{2 n+1} J_{2 n}, J_{2 n}{ }^{2}, 2^{2 n}\right), n \geq 0$.
Theorem: 5
The patterns of non-negative integer solutions to the equation $X^{2}-5 X Y+4 Y^{2}+C X=0$ are exemplified by $(X, Y, C)=\left(J_{2 n+1}{ }^{2}, J_{2 n-1} J_{2 n+1}, 2^{2 n-1}\right)$ where $n \geq 1$.
Proof:
Let X, Y be two non-negative integers such that $X^{2}-5 X Y+4 Y^{2}+C X=0$.
The alteration of the above equation $4 Y^{2}=X(5 Y-X-C)$ ensures that X divides Y^{2} and henceforth $Y^{2}=X Z$ for some non-negative integer Z.
Suppose that a certain prime number p divides both X and Z.
Then $p \mid Y$ and also the relation $X-6 Y+4 Z+C=0$ holds for all $X, Y \in \mathbb{Z}^{+}$, the set of all positive integers.
Thus, p divides C and the chance of such p is $p=2$.
This condition confirms that $X=2 X_{1}, Y=2 Y_{1}$ for some $X_{1}, Y_{1} \in \mathbb{Z}^{+}$and perceptibly the equation in which solutions to be evaluated is converted into $X_{1}{ }^{2}-5 X_{1} Y_{1}+4 Y_{1}{ }^{2}+C_{1} X_{1}=0$ where $C_{1}=C / 2$. By the argument as explained above, $X_{1} \mid Y_{1}{ }^{2}$ and hence $Y_{1}{ }^{2}=X_{1} Z_{1}$ for some $Z_{1} \in \mathbb{Z}^{+}$.
Again, if $p \mid X_{1}$ and $p \mid Z_{1}$, then $p \mid Y_{1}$ and the precise relation $X_{1}-5 Y_{1}+4 Z_{1}+C_{1}=0$ is also true for all $X_{1}, Y_{1} \in \mathbb{Z}^{+}$.
Carrying on this procedure till the equation $X_{n}{ }^{2}-5 X_{n} Y_{n}+4 Y_{n}{ }^{2}+X_{n}=0$ is reached.
Further if $p \mid X_{n}$ and $p \mid Z_{n}$, then $p \mid Y_{n}$ and the accurate equation $X_{n}-5 Y_{n}+4 Z_{n}+1=0$ is detected for all $X_{n}, Y_{n} \in \mathbb{Z}^{+}$.
Finally, p divides 1 which is impossible.
As a result, our supposition that X and Z have common divisors is erroneous. This shows that that $\operatorname{gcd}(X, Z)=1$.
Thus, by the necessary and sufficient condition that the product two coprime numbers should be a perfect square if and only if each of them is a perfect square, $X=P^{2}$ and $Z=Q^{2}$ where $P, Q \in \mathbb{Z}^{+}$and $\operatorname{gcd}(P, Q)=1$.
These adoptions of X and Z provides that $Y=P Q$ and subsequently the essential equation can be developed into $P^{2}-5 P Q+4 R^{2}+C=0$.
By Corollary 2.1, the values of P, Q and C are searched by $(P, Q, C)=\left(J_{2 n+1}, J_{2 n-1}, 2^{2 n-1}\right)$ and therefore $(X, Y, C)=\left(J_{2 n+1}{ }^{2}, J_{2 n-1} J_{2 n+1}, 2^{2 n-1}\right), n \geq 1$.

Corollary: $\mathbf{5 . 1}$

The non-negative integer solutions for the equation $X^{2}-5 X Y+4 Y^{2}-C X=0$ are symbolized by $(X, Y, C)=\left(J_{2 n+2}{ }^{2}, J_{2 n+2} J_{2 n}, 2^{2 n}\right)$ where $n \geq 0$.

Theorem: 6
(i) The patterns of positive integer solutions to the equation $X^{2}-5 X Y+4 Y^{2}+C Y=0$ are incarnated by $(X, Y, C)=\left(J_{2 n-1} J_{2 n+1}, J_{2 n-1}{ }^{2}, 2^{2 n-1}\right)$ where $n \geq 1$.
(ii) The infinitely several positive integer solutions to the equation $X^{2}-5 X Y+4 Y^{2}-$ $C Y=0$ are signified by $(X, Y, C)=\left(J_{2 n+2} J_{2 n}, J_{2 n}{ }^{2}, 2^{2 n}\right)$ where $n \geq 0$.

Theorem: 7

The feasible solution in Jacobsthal-Lucas numbers for two unlike binary quadratic equations $X^{2}-X Y-2 Y^{2}=9 C$ and $X^{2}-X Y-2 Y^{2}=-9 C$ are presented by $(X, Y, C)=\left(j_{2 n}\right.$, $\left.j_{2 n-1}, 2^{2 n-1}\right), n \geq 1$ and $(X, Y, C)=\left(j_{2 n+1}, j_{2 n}, 2^{2 n}\right), n \geq 0$ respectively.
Theorem: 8
Let X, Y be two distinct natural numbers.

$$
\begin{equation*}
\text { If } X^{2}-5 X Y+4 Y^{2}=9 C, \text { then }(X, Y, C)=\left(j_{2 n+1}, j_{2 n-1}, 2^{2 n-1}\right), n \geq 1 \tag{i}
\end{equation*}
$$

(ii) If $X^{2}-5 X Y+4 Y^{2}=-9 C$, then $(X, Y, C)=\left(j_{2 n+2}, j_{2 n}, 2^{2 n}\right), n \geq 0$.

Theorem: 9

If X, Y be any two non-negative integers such that $X^{2}-X Y-2 Y^{2}+9 C X=0$, then either $(X, Y, C)=\left(9 J_{2 n}{ }^{2}, 9 J_{2 n} J_{2 n-1}, 2^{2 n}\right), n \geq 1$ or $(X, Y, C)=\left(j_{2 n+1}{ }^{2}, j_{2 n+1} j_{2 n}, 2^{2 n}\right), n \geq 0$.

Proof:

Assume that $X^{2}-X Y-2 Y^{2}+9 C X=0$ for some non-negative integers X and Y.
If $9 \mid X$, then $9 \mid Y \Rightarrow X=9 U$ and $Y=9 V$ for some $U, V \in \mathbb{Z}^{+}$
Therefore, the needed equation in two unknowns X and Y is enhanced in terms of U and V as $U^{2}-U V-2 V^{2}+C U=0$.
By theorem $4,(U, V, C)=\left(J_{2 n}{ }^{2}, J_{2 n} J_{2 n-1}, 2^{2 n}\right) \Rightarrow(X, Y, C)=\left(9 J_{2 n}{ }^{2}, 9 J_{2 n} J_{2 n-1}, 2^{2 n}\right)$.
If $9 \nmid X$, then by theorem [II], $X=U^{2}$ and $Y=U V$.
These choices of U and V simplifies the considered equation into $U^{2}-U V-2 V^{2}+9 C=0$. By theorem 7, it is resolved that
$(U, V, C)=\left(j_{2 n+1}, j_{2 n}, 2^{2 n}\right) \Rightarrow(X, Y, C)=\left(j_{2 n+1}{ }^{2}, j_{2 n+1} j_{2 n}, 2^{2 n}\right)$ where $n \geq 0$.
Conversely if $(X, Y, C)=\left(9 J_{2 n}{ }^{2}, 9 J_{2 n} J_{2 n-1}, 2^{2 n}\right)$, then by the implementation of corollary 1.2 $X^{2}-X Y-2 Y^{2}+9 C X=\left(9 J_{2 n}{ }^{2}\right)^{2}-\left(9 J_{2 n}{ }^{2}\right)\left(9 J_{2 n} J_{2 n-1}\right)-2\left(9 J_{2 n} J_{2 n-1}\right)^{2}+9 C\left(9 J_{2 n}{ }^{2}\right)$ $=81 J_{2 n}{ }^{2}\left\{J_{2 n}{ }^{2}-J_{2 n} J_{2 n-1}-J_{2 n-1}{ }^{2}+C\right\}=0$,
Likewise, the very same equation might well be fulfilled for $(X, Y, C)=$ $\left(j_{2 n+1}{ }^{2}, j_{2 n+1} j_{2 n}, 2^{2 n}\right)$.

Theorem: 10

Let $X, Y \in \mathbb{Z}^{+}$, the set of all positive integers.
(i) If $X^{2}-X Y-2 Y^{2}-9 C X=0, \quad$ then \quad either $\quad(X, Y, C)=$ $\left(9 J_{2 n+1}{ }^{2}, 9 J_{2 n+1} J_{2 n}, 2^{2 n}\right), n \geq 0$ or $(X, Y, C)=\left(j_{2 n}{ }^{2}, j_{2 n} j_{2 n-1}, 2^{2 n-1}\right), n \geq 1$.
(ii) If $X^{2}-X Y-2 Y^{2}+9 C Y=0$, then either $(X, Y, C)=$ $\left(9 J_{2 n} J_{2 n-1}, 9 J_{2 n-1}{ }^{2}, 2^{2 n-1}\right), n \geq 1$ or $(X, Y, C)=\left(j_{2 n} j_{2 n+1}, j_{2 n+1}{ }^{2}, 2^{2 n}\right), n \geq 0$.
(iii) If $X^{2}-X Y-2 Y^{2}-9 C Y=0$, then either $(X, Y, C)=\left(9 J_{2 n+1} J_{2 n}, 9 J_{2 n}{ }^{2}, 2^{2 n}\right)$, $n \geq 0$ or $(X, Y, C)=\left(j_{2 n} j_{2 n-1}, j_{2 n-1}{ }^{2}, 2^{2 n-1}\right), n \geq 1$.

Theorem: 11

Let X, Y be two distinct non-negative integers. Then
(i) The two different set non-negative integer solutions to the equation $X^{2}-5 X Y+$ $4 Y^{2}+9 C X=0$ are discovered by $(X, Y, C)=\left(9 J_{2 n+1}{ }^{2}, 9 J_{2 n+1} J_{2 n-1}, 2^{2 n-1}\right), n \geq$ 1 and $(X, Y, C)=\left(j_{2 n+2}{ }^{2}, j_{2 n+2} j_{2 n}, 2^{2 n}\right), n \geq 0$.
(ii) All possible solutions in Jacobsthal and Jacobsthal -Lucas numbers to the equation $X^{2}-5 X Y+4 Y^{2}-9 C X=0 \quad$ are \quad determined by $(X, Y, C)=$

$$
\left(9 J_{2 n+2}{ }^{2}, 9 J_{2 n} J_{2 n+2}, 2^{2 n}\right), n \geq 0 \text { and }(X, Y, C)=\left(j_{2 n+1}{ }^{2}, j_{2 n+1} j_{2 n-1}, 2^{2 n-1}\right), n \geq
$$ 1.

(iii) If $X^{2}-5 X Y+4 Y^{2}+9 C Y=0$, then two sequences of solutions are presented by $(X, Y, C)=\left(9 J_{2 n-1} J_{2 n+1}, 9 J_{2 n-1}{ }^{2}, 2^{2 n-1}\right), n \geq 0 \quad$ and $\quad(X, Y, C)=$ $\left(j_{2 n} j_{2 n+2}, j_{2 n}{ }^{2}, 2^{2 n-1}\right), n \geq 1$.
(iv) If $X^{2}-5 X Y+4 Y^{2}-9 C Y=0$, then either $(X, Y, C)=\left(9 J_{2 n} J_{2 n+2}, 9 J_{2 n}{ }^{2}, 2^{2 n}\right)$, $n \geq 1$ or $(X, Y, C)=\left(j_{2 n-1} j_{2 n+1}, j_{2 n-1}{ }^{2}, 2^{2 n-1}\right), n \geq 0$.

CONCLUSION:

In this article, the generic solutions to a specific set of unambiguous binary quadratic equations are revealed in terms of Jacobsthal and Jacobsthal-Lucas numbers. In this manner, one may explore solutions to some cubic or higher degree Diophantine equations having more than two variables concerning other periodic sequences of integers.

REFERENCES:

[1] Andreescu, Titu, and Dorin Andrica. "Why Quadratic Diophantine Equations?." Quadratic Diophantine Equations. Springer, New York, NY, 2015. 1-8.
[2] Bender, Edward A., and Norman P. Herzberg. "Some Diophantine equations related to the quadratic form ax2+ by2." AMERICAN MATHEMATICAL SOCIETY 81.1 (1975).
[3] Campos, H., et al. "On some identities of k-Jacobsthal-Lucas numbers." rn 2 (2014): 5.
[4] Hardy, Godfrey Harold, and Edward Maitland Wright. An introduction to the theory of numbers. Oxford university press, 1979.
[5] Jhala, Deepika, Kiran Sisodiya, and G. P. S. Rathore. "On some identities for kJacobsthal numbers." Int. J. Math. Anal.(Ruse) 7.12 (2013): 551-556.
[6] Kalman, Dan, and Robert Mena. "The Fibonacci numbers-exposed." Mathematics magazine 76.3 (2003): 167-181.
[7] Keskin, Refik, and Bahar Demirtürk. "Solutions of Some Diophantine Equations Using Generalized Fibonacci and Lucas Sequences." Ars Comb. 111 (2013): 161-179.
[8] Keskin, Refik, Olcay Karaatl1, and Zafer Yosma. "On the Diophantine equation x^ 2$\mathrm{kxy}+\mathrm{y}^{\wedge} 2+2^{\wedge} \mathrm{n}=0 . "$ Miskolc Mathematical Notes 13.2 (2012): 375-388.
[9] Keskin, Refik. "Solutions of some quadratic Diophantine equations." Computers \& Mathematics with Applications 60.8 (2010): 2225-2230.
[10] Koken, Fikri, and Durmus Bozkurt. "On the Jacobsthal-Lucas numbers by matrix methods." Int. J. Contemp. Math. Sciences 3.33 (2008): 1629-1633.
[11] Koshy, Thomas. Fibonacci and Lucas Numbers with Applications, Volume 2. John Wiley \& Sons, 2019.
[12] Marlewski, A., and Piotr Zarzycki. "Infinitely many positive solutions of the Diophantine equation $\mathrm{x}^{2}-\mathrm{kxy}+\mathrm{y}^{2}+\mathrm{x}=0$. Computers \& Mathematics with Applications 47.1 (2004): 115-121.
[13] McDanlel, Wayne L. "Diophantine representation of Lucas sequences." (1993).
[14] Melham, Ray. "Conics which characterize certain Lucas sequences." Fibonacci Quarterly (1997).
[15] Mollin, Richard A. "Quadratic Diophantine Equations $x^{2}--D y^{2}=c^{n} . "$ Bulletin of the Irish Mathematical Society 58 (2006).
[16] Niven, Ivan. "Quadratic Diophantine equations in the rational and quadratic fields." Transactions of the American Mathematical Society 52.1 (1942): 1-11.
[17] Sandhya, P., Pandichelvi, V., "Assessment of Solutions in Pell and Pell-Lucas Numbers to Disparate Polynomial Equation of Degree Two." Wesleyan Journal of Research, 14 (2021) 129-134.
[18] Yoshinaga, Takashi. "On the solutions of quadratic Diophantine equations." Documenta Mathematica 15 (2010): 347-385.
[19] Yuan, Pingzhi, and Yongzhong Hu. "On the Diophantine equation $x^{2}-k x y+y^{2}+1 x=0$, $1 \in\{1,2,4\} . "$ Computers \& Mathematics with Applications 61.3 (2011): 573-577.

