

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 2284

ISSN: 1004-9037
https://sjcjycl.cn/

DOI: 10.5281/zenodo.7762185

MODEL A FINITE STATE MACHINE AS A CONSTRUCT IN COMPUTER
PROGRAMMING

Sachin Kadam1, Shweta Jogalekar2, Satyawan Hembade3

1 Professor, Institute of Management and Entrepreneurship Development, Bharati Vidyapeeth
(Deemed to be University),

 Pune (India)
2Assistant Professor, Institute of Management and Entrepreneurship Development, Bharati

Vidyapeeth (Deemed to be University), Pune (India)
3Associate Professor, Institute of Management and Entrepreneurship Development, Bharati

Vidyapeeth (Deemed to be University), Pune (India)

ABSTRACT
The concept of Finite State Machine(FSM) can be used to model state-based computing
systems. It provides an elegant way, to many of the complex problems in computing domain.
Generally, it also forms an important part of computer science curriculum. But unfortunately,
the developers hardly use this beautiful problem modeling technique to implement real life
solutions. This research article explores a possibility to bridge this gap between theoretical
aspects of FSM and its practical application in computer programming by extending FSM as a
construct in computer programming. It follows Case Study research methodology to first
analyze a specific scenario in detail. This is then generalized into an algorithm
(FSM2Construct) using Design and Creation research methodology. FSM2Construct algorithm
is designed using Greedy algorithm design strategy.
Keywords: Finite State Machine, FSM, Computer Programming Constructs, Greedy
Algorithm Design Strategy, FSM2Construct Algorithm

1: Introduction
This research article explores a possibility of synthesizing two concepts from computer science
namely Finite State Machine and Constructs in Programming.

1.1: Finite State Machine (FSM)
FSM can be perceived as an application of graphs where FSM is a device whose operation is
composed of modes called states (of which there are only finite numbers). The machine can
transit from one state to another as per appropriate input. It consists of a finite number of states
and produces outputs on state transitions after receiving output. (Lee & Yannakakis, 1996).
FSM plays a vital role in the digital design. Prominently it is used to model sequential circuits,
communication protocols etc. (Lee & Yannakakis, 1996). Most digital designs rely on Finite
State Machines (FSMs). The central concept behind an FSM is to store a series of distinct states
and transition between them in accordance with the values of the inputs and the machine's
current state. There are two different forms of FSM: Moore (where the state machine's output
is solely based on the variables of the state) and Mealy (where the values of the current state
variables and input determines the output). (Wilson & Mantooth, 2013). FSM is also referred

MODEL A FINITE STATE MACHINE AS A CONSTRUCT IN COMPUTER PROGRAMMING

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 2285

asfinite state automata or finite automata. The states of a finite automata can be depicted with
a directed graph known as state transition diagram(Aho, Hopcroft, & Ullman, 1974).
1.2: Programming Constructs
The syntax and behavioral aspect of programming languages are concisely specified by its
fundamental constructs. (Mosses, 2021) . The theoretical aspect of computer science identifies
three fundamental programming constructs namely sequence, decision and iteration (Grogono
& Nelson, 1882). Various extensions of these structures (e.g., Switch-Case extension of
Decision Construct) are generally provided by almost all empirical programming
languages(Wirth, 2005). These extensions are to be considered as theoretically similar with
their fundamental counterparts. The other constructs like recursion, multithreading, exception
handling or routines covering parameter passing are core concepts in object orientation.
(Sajaniemi & Chenglie, 2007).

2: Significance of Research
Computer software is categorized in two fundamental classes; Application and System
Software(French, 1985).

 Application Software categorizes applications directly used by end users (e.g. business
applications).

 System Software categorizes niche applications like operating systems, compilers and
interpreters used by computer application developers to develop Application Software.

FSM’s are a commonly used in the design of a logical circuit. They are well-suited to

design systems that loop over several different alternative actions based on input. This makes
it apt for system software developers to model and develop system software (Aho, Hopcroft,
& Ullman, 1974). FSMs can be proved beneficial for embedded systems as well because of
their efficiency of using limited resources of a system (Drumea & Popescu, 2004). But
Application Software developers generally consider FSM as a theoretical concept in computer
science with little practical application to solve real world problems. (Wagner, Schmuki, &
Wolstenholme, 2006), applied FSM to software development. It offers a critical evaluation of
the idea of employing executable specifications as a foundation for FSM in order to streamline
software development processes and boost quality.
Researchers are of the opinion that FSM can also be used as an elegant mechanism by
application software developers to solve real world problems. The theoretical rigor intrinsic in
a FSM will result in robust application software.

3: Research Problem
FSM is a model of behavior. It is generally considered as an abstract concept defining a
protocol for progressing through a limited (finite) number of positions (state) each performing
some processing and then selecting the next state, usually based on the next piece of input.

Programming is also considered as an abstract concept in computer science and
generally treated independent of a programming language. Various constructs used in a
program are also considered to be theoretical in nature and language independent.

MODEL A FINITE STATE MACHINE AS A CONSTRUCT IN COMPUTER PROGRAMMING

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 2286

A synthesis of these two concepts may provide an opportunity to enhance
understanding and application of FSM from practical perspective. This research article
proposes to synthesize these two abstract concepts together and provide an applied dimension
to FSM in the form of a computer programming construct.

Problem Statement:
An abstract FSM can be converted intoconcrete applicationsoftware by implementing it as a
computer programming construct following an algorithm as a model.

4: Research Methodology
This research proposes to develop a new algorithm. Researcher has selected Design and
Creation research methodology for this research as it provides a structured approach to design
and develop a new artifact(Oates, 2005).The learning-through-making approach is the
emphasis of the design and creation research strategy (Besoain, Jego, & Gallardo, 2021). This
methodology involves six process steps to help a researcher to develop an artifact by exploring
functional capabilities of existing systems(Daud & David, 2011);

1. Awareness of the Problem: to understand need for new artifact
2. Suggestions: to explore and use functional capabilities of existing systems
3. Development: to match requirements from first step and suggestions from second step

to create a new artifact
4. Evaluation: to access the feasibility of new artifact with respect to requirements from

first step
5. Conclusion: to summarize contribution of the research

The research contents of this article and research outputs at various stages can roughly be
mapped with process steps involved in Design and Creation research methodology as follows:

Step 1: Sections on Introduction, Significance of Research and Research Problem
(Output: Problem Statement)
Step 2: Section on FSM as a Programming Construct (Output: Need for an algorithm
to convert a FSM into a programming construct)
Step 3: Sections on Case Study and Algorithm to Model FSM as Programming
Construct (Output: FSM2Construct Algorithm)
Step 4: Sections on Analysis of FSM2Construct Algorithm (Output:Analysis of
Correctness of the Algorithm, Time Complexity and Space Complexity)
Step 5: Sections on Findings and Interpretations and Conclusion (Output: Conclusive
Summary)

5: FSM as a Programming Construct
Analysis of abstract nature of FSM and abstract nature of Programming has revealed similarity
in both the concepts. Both of them can be treated in a similar fashion through a Table metaphor.
This metaphor will have a table that holds all possible states of a FSM, and lists the actions to
do when you enter each state. The last action is to calculate (often by a further table lookup

MODEL A FINITE STATE MACHINE AS A CONSTRUCT IN COMPUTER PROGRAMMING

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 2287

based on the state you are in and the next input token) what state to enter next. You start in a
state known as the initial-state. Along the way, your transition table might tell you to enter an
error state, signifying an unexpected or erroneous input. You continue to make state transitions
until you arrive at the end state.A further analysis revealed that it is well-suited to programs
that loop over several different alternative actions based on input.

6: Case Study
6.1: Problem
Let us consider the problem to check the presence of a substring s1 in a given input string s2.
The following two scenarios illustrate the problem with examples:

Scenario #1:If s1= “mat” and s2=“automata”, then the output should be "'mat' substring is
present."
Scenario #2:If s1= “mat” and s2= “automaat”, then the output should be "'mat' substring is not
present."

6.2: Solution to Problem
The scenarios stated in the case study can be modeled as a FSM.The first thing required to
follow the FSM approach is to identify different states involved in the system. There must be
finite number of these states. In our case study we can identify four such states as follows:

State #1: Start state
State #2: If input ‘m’ is recognized
State #3: If input ‘a’ is recognized after ‘m’
State #4: If input ‘t’ is recognized after ‘ma’

This can be represented as a state transition diagram as follows (Fig. 1):

(Fig. 1: State Transition Diagramrepresentation of the Case Study)

A state transition diagram is a directed graph. Fig. 1 can be textually described as follows:

1. State-1 is the starting state (initial state).

MODEL A FINITE STATE MACHINE AS A CONSTRUCT IN COMPUTER PROGRAMMING

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 2288

2. If input “m” is recognized when in state-1 thsen the system will advance to state-2. If
any input other than “m” is recognized when in state-1 then the system will remain in
state-1.

3. If input “a” is recognized when in state-2 then the system will advance to state-3. If any
input other than “a” is recognized when in state-2 then the system will return back to
state-1.

4. If input “t” is recognized when in state-3 then the system will advance to state-4. If any
input other than “t” is recognized when in state-3 then the system will return back to
state-1.

5. If the system is in state-4, then it indicates that the substring “mat” is recognized. Thus
state-4 is the end state depicting the success.

This illustrates that the working of a finite state machine is governed by the current

state and the current input. Their combination decides the next state of the machine. The above
mentioned state transition diagram (Fig. 1) can be represented as a state transition table as
follows (Table1):

Current State
Input

m a t <any other character>
State 1 State 2 State 1 State 1 State 1
State 2 State 1 State 3 State 1 State 1
State 3 State 1 State 1 State 4 State 1

(Table1: State Transition Table representation of the Case Study)

In the above state transition table the table values represent the next states for given current
state and input values.

6.3: Implementation of State Transition Table in a Computer Application
Now let us consider the implementation aspect of this FSM. Because the finite state machines
are represented with state transition diagrams, which are directed graphs, we can implement
them using the graph data structures. The graph data structures provide the most natural and
flexible way to implement the FSMs, but they are relatively difficult to represent in a computer
program.

An alternative approach can be selected which will focus on state transition table
corresponding to the FSM. The Switch-Case programming construct can be used to represent
the state transition table given in Table 1. The use of Switch-Case construct to implement state
transition table will make it fundamentally similar to Decision construct.

7: Algorithm to Model FSM as Programming Construct

MODEL A FINITE STATE MACHINE AS A CONSTRUCT IN COMPUTER PROGRAMMING

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 2289

An algorithm provides a procedure consisting of finite number of simple and unambiguous
steps to solve the problem. It is represented in the form of natural language. It is then
represented into pseudo-code for ease of conversion into a computer program(Dromey, 1994).
The specific problem discussed in case study can be generalized as an algorithm to be
applicable for any FSM.

7.1: Algorithm
Algorithm Design Method:
This research proposes to use one of the established methods of algorithm design. The state-
to-state movement of an FSM suggests Greedy Algorithm Design Method to be suitable here.

Greedy Method:In this algorithm design method we try to design an optimal solution in stages.
We make a best possible decision at each stage which cannot be changed at latter stages(Skiena,
2007)(Cormen, Leiserson, Rivest, & Stenic, 2008).

Listing 1 provides an algorithm to convert a FSM into a programming construct. Researcher
has named this algorithm as FSM2Construct Algorithm.

FSM2Construct Algorithm:

1. A FSM consists of one initial-state, multiple intermediate-states and one or more exit-
states. Represent each state in the form of an individual subroutine.

2. Set the current-state to initial-state and input-variable to NULL.
3. Accept input to FSM in input-variable.
4. Execute an appropriate subroutine based upon current-state and value of input-variable.
5. Repeat Step 3 and 4 till you reach one of the exit-states.

(Listing 1: FSM2ConstructAlgorithm)

7.2: Pseudo-Code representation of the Algorithm
The FSM2Constructalgorithm in Listing 1 can be represented in the form of pseudo-code
(Dromey, 1994)to ease its implementation in any empirical programming language supporting
Switch-Case construct (Listing 2).
subroutine State1 (varInputToFSM)
begin
 processing as per requirement of this state with respect to value of InputToFSM variable
 {assert: set the CurrentState as per FSM}
end

subroutine State2 (varInputToFSM)
begin
 processing as per requirement of this state with respect to value of InputToFSM variable
 {assert: set the CurrentState as per FSM}
end

subroutineStateN (varInputToFSM)

MODEL A FINITE STATE MACHINE AS A CONSTRUCT IN COMPUTER PROGRAMMING

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 2290

begin
 processing as per requirement of this state with respect to value of InputToFSM variable
 {assert: set the CurrentState as per FSM}
end

program FSM (input, output)

varCurrentState {variable to keep track of current state}
varInputToFSM { variable to accept input value for FSM}

begin
 {assert: State1 is initial-state}

{assert: set the current-state as State1}
{assert:InputToFSM is NULL}

 repeat
 begin
 get InputToFSM
 {assert:InputToFSM is a valid value}

switch (CurrentState)
begin
 case State1: goto subroutine State1(InputToFSM)
 case State2: goto subroutine State2(InputToFSM)
 . . .
 caseStateN: goto subroutine StateN(InputToFSM)
end

 {assert:CurrentState is a valid state}
 until (CurrentState is not an Exit State)
 {assert:CurrentStateis in an exit state}
end

(Listing 2: Pseudo-code forFSM2Construct Algorithm)

8: Analysis of FSM2Construct Algorithm
This research has proposed FSM2Construct algorithm to model a FSM as a construct in
programming language. Analysis of an algorithm is performed as per three parameters –
Correctness, Time Complexity and Space Complexity (Sedgewick, 2008). In this section
FSM2Construct algorithm is analyzed accordingly.

8.1: Correctness
Correctness of an algorithm verifies that the results obtained from the algorithm (i.e. output)
are in accord with formally defined output specifications (Dromey, 1994). Correctness of an
algorithm can be verified through a mathematical-proof and/or a trace-table. The State
Transition Table corresponding to a FSM provides an intrinsic trace-table automatically
verifying its correctness. Researcher has practically tested this by successfully modeling the
FSM discussed in case study. Researcher also has successfully implemented the same as a
computer program following the corresponding pseudo-code (Listing 2).

MODEL A FINITE STATE MACHINE AS A CONSTRUCT IN COMPUTER PROGRAMMING

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 2291

8.2: Time Complexity
Time Complexity of an algorithm provides a hardware independent metric to identify possible
amount of computer time it needs for execution (Sahni, 2000). It follows a four-step approach
to do so.

1. Identify key-operation involved in the algorithm.
2. Identify best-case, average and worst-case execution scenarios for the algorithm.
3. Calculate execution frequency ofkey-operationfor these scenarios.
4. Establishes a relation between number-of-inputs and execution frequency of the key-

operation.

Changing the Current-State as per input is identified as the key-operation for
FSM2Construct algorithm. Its execution frequency is directly proportional to number of inputs.
This results into linear function for Time Complexity.

Time Complexity = O(n), where n is number of inputs

8.3: Space Complexity
Space Complexity of an algorithm provides a hardware independent metric to calculate space
required for its execution(Sahni, 2000). It is stated as;

S(P) = C + Sp(instance characteristics)
where,

 S(P) is total space requirement of program P.
 C is a constant denoting fixed part of space requirement independent of instance

characteristics. It includes space for instruction set, fixed-size variables and constants.
 Sp denotes variable component of space requirement dependent on dynamically

allocated space as per problem instance.

Analysis of FSM2Construct algorithm reveals that it does not require any dynamically
allocated memory. Therefor its total space requirement is constant.

Space Complexity = C, where C is a constant

9: Findings and Interpretations:
The findings and interpretations of this research can be summarized as follows:

Correctness of the algorithm ensures that a FSM can be modeled as a programming
construct. This provides a guideline framework to application programmers to use FSM
approach in programming. It will encourage application programmers to model their
applications on FSM.

MODEL A FINITE STATE MACHINE AS A CONSTRUCT IN COMPUTER PROGRAMMING

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 2292

The proposed algorithm exhibits O(n) Time Complexity. This is linear in nature. This
ensures that it will take finite time in proportion with number of inputs for completion. Thus it
is applicable to solve real-world problems involved in application software domain.

The proposed algorithm exhibitsconstant Space Complexity. This ensures that a FSM

model can be converted into an application program which will execute on a generic computer
system. Thusit is viable to solve practical problems using hardware available with
genericcomputer systems.

Observation of Listing 2 reveals programming language independent nature of the

pseudo-code. It can be easily converted into a computer program using any empirical
programming languagelike C, C++, Java, C# etc.

The solution modeled around a FSMis generally modular in nature making it flexible.

This can be illustrated through a new scenario with respect to discussed case study.
Scenario #3: The substring search should be case insensitive.
The modular nature of FSM model allows this change through a simple modification in

Switch-Case construct in pseudo-code. This emphasizes the elegance of proposed model.

10: Conclusion
FSM is considered as a tool to provide technology independent understanding of fundamental
concepts involved in computer science. This approach overshadows practical applications of
FSM in programming domain. This research article explored FSM as a modeling technique to
implement application software by extending FSM as a programming construct. A guideline
framework was proposed in the form of FSM2Construct algorithm to do so. FSM2Construct
algorithm was then analyzed for its correctness, time complexity and space complexity. The
analysis established its practical viability in application software domain. This was further
supported with its flexibility due to modular nature.

11: References

1. Aho, A., Hopcroft, J., & Ullman, J. (1974). The Design and Analysis of Computer
Algorithms. Wesley Publishing Company Inc.

2. Besoain, F., Jego, L., & Gallardo, I. (2021). Developing a virtual Museum: Experience
from the Design and Creation Process. p. 12(6):244.

3. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stenic, C. (2008). Introduction to
Algotithms. Prentice Hall of India Private Limited.

4. Daud, A. M., & David, S. (2011). Design Science Research Methodology: An Artefact
- Centric Creation and Evaluation Approach. ACIS 2011 Proceedings.

5. Dromey, R. G. (1994). How to solve it by Computer. Prentice - Hall of India Privalte
Limited.

6. Drumea, A., & Popescu, C. (2004). Finite state machines and their applications in
software for industrial control. Intenational Spring Seminar on Electronics Technology:
Meeting the Challenges of Electronics Technology Progress.1, pp. 25-29. Bankaya,
Bulgaria: IEEE. doi:10.1109/ISSE.2004.1490370

MODEL A FINITE STATE MACHINE AS A CONSTRUCT IN COMPUTER PROGRAMMING

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 2293

7. French, C. S. (1985). Computer Science - An Instructional Manual. DP Publications
Ltd.

8. Grogono, P., & Nelson, S. H. (1882). Problem Sovling and Computer Programming .
Addison Wesley Publishing Company Inc.

9. Lee, D., & Yannakakis, M. (1996). Principles and methods of testing finite state
machines - A Survey. Proceedings of the IEEE, (pp. 1090 - 1123).

10. Mosses, P. D. (2021). Fundamental constructs in Programming Languages. Lecture
Notes in Computer Science, 13036. doi:10.1007/978-3-030-89159-6_19

11. Oates, B. J. (2005). Researching Information Systems and Computing. SAGE
Publications.

12. Sahni, S. (2000). Data Structures, Algorithms and Applications in C++. McGraw-Hill
International Edition.

13. Sajaniemi, J., & Chenglie, H. (2007). Teaching Programming: Going beyond "Object
First"., (pp. 255-265). Finland.

14. Sedgewick, R. (2008). Algorithms in C++. Pearson Education Inc.
15. Skiena, S. S. (2007). The Algorithm Design Manual. Springer Science + Business

Media Inc.
16. Wagner, F., Schmuki, R., & Wolstenholme, P. (2006). Modeling Software with Finite

State Machines: A Practical Approach . Auerbach Publications.
17. Wilson, P., & Mantooth, A. (2013). Model-Based Engineering for Complex Electronic

Systems. doi:https://doi.org/10.1016/B978-0-12-385085-0.00006-3.
18. Wirth, N. (2005). Algorithm + Data Structures = Programs. Prentice - Hall of India

Private Limited.

