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ABSTRACT 
Microstructure refers to a material's internal structure. It records a material's origin and 
establishes all of its chemical and physical attributes. Although microstructural 
characterization is common and well-known, microstructural classification is typically carried 
out manually by human experts, which introduces subjectivity-related uncertainties. Only a 
few previous studies exist since it is extremely difficult to automatically classify 
microstructures because they may be a combination of various phases or constituents with 
complicated substructures. Previous studies concentrated on expertly created and constructed 
features and separated the classification of microstructures from the feature extraction stage. 
By simultaneously learning the features from the input and the classification phase, Deep 
Learning techniques have recently demonstrated outstanding performance in vision 
applications. In this work, it is suggested to apply a Deep Learning algorithm to classify low 
carbon steel's microstructure using instances of certain microstructural elements. This work 
proposes the classification of the steel alloys based on the features of microstructure,which 
were extracted through an External Attention Transformer network (EATNet). Combining the 
external attention mechanism with the transformer can provide better performance when 
compared to conventional Convolutional Neural Network based approach. The proposed 
classification models were trained using microstructure images of ferritic-martensitic steels 
containing 9 to 12 wt% Cr, also referred to as 9% Cr steel. 
Keywords: microstructural classification, Deep Learning techniques, External Attention 
Transformer network, conventional Convolutional Neural Network, ferritic-martensitic 
steels 
INTRODUCTION 
In the last 40 years, big forgings and castings of steam power plants, as well as thick-section 
components like pipelines, have found growing use of martensitic creep resistant 9–12% Cr 
steels. The four pillars of materials research are composition, processing, microstructure, and 
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material properties. [1] The main methods for characterizing materials and providing the 
foundation for describing material behavior are optical microscopy, scanning electron 
microscopy (SEM), and transmission electron microscopy, to name three. Microstructures at 
different length scales can be acquired by various techniques. Understanding of the 
microstructure stability of this class of alloys has advanced significantly thanks to new 
breakthroughs in better microstructure imaging tools and improved microstructure models. 
Individual researchers often study microstructure photos, and their experience influences how 
they perceive the microstructure-mechanical behavior. Instead of depending on single-point 
individual interpretations, artificial intelligence (AI), or more precisely machine learning (ML), 
[2] has recently become more widely utilized in materials research to acquire and process the 
microscopic images and under the correlation between microstructure and the mechanical 
properties [3] or classify the category of alloy. By utilizing contemporary artificial neural 
networks, this opens up fresh and intriguing study prospects. 
Consider the commonly usedtype of material, 9% Cr martensite/ferrite steels, in which ML 
approaches are employed to handle the problem of determining composition-microstructure-
mechanical property. The 621 SEM digital photomicrographs of 9% Cr steels with various 
element concentrations (labelled as HR, P92, and CPJ based on element concentrations) serve 
as the input data for the ML model. When the processing conditions are regulated and kept 
constant, the microstructure produced by an alloy with the same composition will be the same. 
Since we have many of these photos for the same alloy, a huge training samples of 
microstructure images helps reduce the impact of unintentional factors, which is useful for 
building a successful deep neural architectures which are considered to be data hungry model. 
The classification process is strengthened using a combination of transformer and attention 
techniques. According to the significance of activation, the attention technique can be seen as 
a process for reallocating resources. It is crucial to the functioning of the human visual system. 
The last ten years have seen rapid advancement in this subject. The research in [4] proposed 
SENet, demonstrating how the noise-canceling capabilities of the attention mechanism can 
enhance classification performance. 
Self-attention is a specific case of attention. The main principle of self-attention is computing 
the similarity among features to capture long-range interdependence. However, the 
computational and storage overheads quadratically rise with the depth of the feature 
map[31].The external attention computes the relationship between self-queries and a much 
smaller learnable key memory, which captures the overall context of the dataset, as opposed to 
self-attention, which derives an attention map by calculating affinities between self-queries and 
self-keys. Since external attention doesn't really rely on semantic data, it can be optimized end-
to-end by the back-propagation process without the need for an iterative approach. With 
enough training data, a transformer outperforms a conventional CNN, according to the 
suggested architecture based on patch encoding and a transformer in [6].One way to 
conceptualize self-attention is as a linear combination of self-values that refines the input 
feature. The requirement for a 𝑁 × 𝑁 self attention matrix and a𝑁 element self value matrix in 
this linear transformation, however, is far from clear. Additionally, self-attention only takes 
into account the relationships between items inside a data sample and ignores potential 
relationships between elements in various samples, which may restrict its flexibility and 
capacity[26][28]. 
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LITERATURE SURVEY 
This section presents an overview of various deep learning based solutions proposed in 
literature for solving problems in the field metal microscopic image analysis. Deep learning 
has recently accelerated the development of its applications in a variety of fields, including 
social network analysis[8], information retrieval[9], speech and audio processing[10], visual 
data processing[11], natural language processing[12], and others. In the area of materials 
science, deep learning methods have also been tried [13], including structure prediction and 
design [14], chemistry learning [15], structure-property linkage analysis [16], and structure 
characterization [17]. Microscopical imaging analysis, which uses objects to obtain the real-
space information of materials, is particularly significant among all research topics. Two issues 
with SEM image analysis have been resolved using deep learning: the first is the classification 
of microscopic pictures based on their morphological characteristics [18], and the second is 
resolution improvement to enhance the image quality [19]. The authors of [20] used a pre-
trained deep learning network to classify microscopic pictures. The authors demonstrated that 
Inception-v3 [21], which was constituted of symmetric and asymmetric blocks including 
convolutions, pooling, concatenations, etc., performed better than others on both accuracy and 
computational efficiency. The authors analyzed the findings of four different deep learning 
models (Inception-slim, Inception-v3, Inception-v4 and ResNet)[27]. 
A pixel-by-pixel categorization on photographs of carbon steel is an additional example [18]. 
The process of classifying an image pixel-by-pixel has the advantage of revealing information 
about the shape and area of each object, as opposed to the global picture classification used in 
the example above. An object-based convolutional neural network was suggested in the work 
of [22] for classifying elements and phases. For pixel-wise segmentation on low carbon-steel 
SEM or Light Optical Microscopy (LOM) pictures, a network known as max-voted fully 
convolutional neural networks (FCNN) [MVFCNN] was developed. Identification and 
classification of the structural and rotational states of surface molecules are additional 
applications [23]. The framework was able to determine if each molecule was in the bowl-up 
or bowl-down condition and classify the rotation into four groups by fusing the Markov 
network and convolutional neural network[32-38]. This paper shall work on developing 
solutions to enhance the performance of the CNN model by including a combination of 
attention mechanism and transformer technique.Spatial attention enables neural networks to 
learn the locations that should be the focus of attention[30]. The important information is kept 
while the spatial information from the original image is changed into another space through 
this attention process[29]. 
MATERIALS AND METHOD 
Dataset 
Scanning Electron Microscope digital photomicrographs of 9% Cr martensite/ferrite steels with 
various concentrations are considered in this study for training the classification model. When 
the processing conditions are regulated and kept constant, the microstructure produced by an 
alloy with the same composition will be the same. However, some environmental noises may 
have an impact on the actual alloy synthesis process, adding some uncertainty. Images of three 
different steel alloys, P92, HR, and CPJ, are available in this dataset. First, the images are 
cleaned by removing any unnecessary components, including the labels for the enhancing 
information on the images produced by the microscope. In order to classify the images, the 
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deep neural architecture decreases the spatial dimensionality of the microstructure images and 
extracts the key information from the images. The Table 1 present the details on the number of 
data samples used for classification in each category. 
Table. 1 Class Distribution 
Category No. of 

Images 

P92 188 

HR 244 

CPJ 300 

 

 
le 

Fig. Sample Image of CPJ, HR, and P92 steel alloys 
Normalization 
For normalizing the attention map the softmax based normalization is employed so that 
∑ 𝛼௜,௝ = 1௝ . However, matrix multiplication is used to determine the attention map. The 

attention map is sensitive to the scale of the input features, in contrast to cosine similarity. The 
work in [5] uses double normalization, which independently normalizes columns and rows, as 
suggested in [7], to resolve this issue. The double normalization was formulated as; 

(𝛼෤)௜,௝ = 𝐹𝑀௞
் 

(𝛼෤)௜,௝ = exp (𝛼෤௜,௝)/ ෍ 𝛼෤௜,௞

௞

 

External Attention Algorithm 
Consider a feature map represented as 𝐹 ∈ ℝே×ௗ where N is the number of pixels in images 
and d is the dimension of the feature. The self-attention mechanism projects the input to the 

following matrices; query matrix - 𝑄 ∈ ℝே×ௗᇲ
, key matrix 𝐾 ∈ ℝே×ௗᇲ

, and value matrix- 𝑉 ∈

ℝே×ௗ. The self-attention mechanism can be mathematically expressed as follows; 
𝐴 = (𝛼)௜,௝ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾்) 

𝐹௢௨௧ = 𝐴𝑉, 𝑤ℎ𝑒𝑟𝑒 𝐴 ∈ ℝே×ேrepresents the attention matrix, and 𝛼௜,௝ presents the similarity 

between the ith and jth pixel. A variant of self-attention estimates the attention map from the 
feature 𝐹 which is represented mathematically as given below; 

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝐹்) 
𝐹௢௨௧ = 𝐴𝐹 
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Fig. Schematic view of External-Attention [5] 

By calculating pixel-by-pixel resemblance in the feature space, the attention map is created in 
this case, and the outcome is a more accurate feature description of the input. Self-attention 
utilization, however, suffers significantly from the enormous computational complexity of 
𝜃(𝑑𝑁ଶ), even after it has been simplified. Direct application of self-attention to images is not 
practicable due to the quadratic complexity with respect to the number of input pixels. In order 
to reduce the computational complexity, earlier work [6] uses self-attention on regions rather 
than pixels.The external attention estimates the attention input pixels and the external memory 
unit 𝑀 ∈ ℝௌ×ௗ; 

𝐴 = (𝛼)௜,௝ = 𝑁𝑜𝑟𝑚(𝐹𝑀்) 

𝐹௢௨௧ = 𝐴𝑀. 
The similarity between the i-th pixel and the j-th row of M, which is a learnable quantity 
independent of the input and serves as a memory of the entire training dataset, is represented 
by i,j in Equation (5) as opposed to self-attention. The attention map, A, is normalized similarly 
to self-attention and is inferred using this learnt dataset-level prior knowledge. Finally, using 
the similarities in A, we update the input characteristics from M.For increasing the capacity of 
the network two different memory units 𝑀௞ and 𝑀௩were used as the key and value by which 
the external attention computation can be expressed as; 

𝐴 = 𝑁𝑜𝑟𝑚(𝐹𝑀௞
்) 

𝐹௢௨௧ = 𝐴𝑀௩ 
This technique is linear in the number of pixels since𝑑 and𝑆 are hyper-parameters and the 
computation cost of external attention is𝜃(𝑑𝑆𝑁). In reality, it was discovered that trials perform 
best with a modest value of S as 64.As a result, external attention is far more effective than 
self-attention and can be used to process large-scale data directly.Additionally, it should be 
mentioned that the computational cost of external attention is about similar to a convolution of 
size 1 by 1. 
Transformer  
Transformer [24], which uses an attention-based structure, has first shown how much of an 
impact it has on the machine translation and sequence modelling tasks. Transformers are 
therefore more difficult to train images on. Pixels make up an image, and each image can 
include tens of thousands to millions of pixels. Each pixel will therefore perform a paired 
operation with each and every other pixel in the image in a transformer. An attention 
mechanism will expend (500*2)*2 operations on an image with a dimension of 500*500 pixels. 
Even with many GPUs, this is a massive task. As a result, rather of using global attention when 
studying images, academics typically use some type of local attention (group of pixels).The 
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transformers are initially unsure of where each patch belongs. Positional embeddings thereby 
aid the transformer in determining where each patch belongs. The position of the patches was 
described using a straightforward numbering system of 1, 2, 3, etc. These are learnable vectors 
rather than only integers. That example, rather of using the number 1 directly, a lookup table 
that contains vectors for each number denoting the position of the patch is present. As a result, 
the first vector from the table is taken and placed in the transformer with the first patch. In a 
similar manner, for the second patch, the second vector from the table is taken and added to 
the transformer along with the second patch, and so on.This needs to be fed to the transformer 
in some fashion so that it can process it. Unrolling the image into a row/ column vector is one 
method of doing this. However, linear projection was utilized in [24]. This indicates that there 
is only one matrix, denoted by the letter E. The first step is to unroll a single patch into a linear 
vector. The embedding matrix E is then multiplied by this vector. The positional embedding 
and the final result are then sent to the transformer. 

 
Fig. Architecture of Transformer Encoder [24] 

A transformer encoder is then provided with all of the patches (linear projected) and each 
positional embedding. Standard transformer architecture is used in this transformer. The 
schematic view of the transformer based image classification approach is presented in the 
below Fig. XX 

 
Fig. Schematic view of image classification with Transformer [24] 

Performance Metrics 
Accuracy does not account for class imbalance, it can be exceedingly deceptive. If the classifier 
merely predicts all negative samples correctly, it can still achieve above 90% accuracy when 
the positive to negative ratio is 10:100. Additionally, since machine learning algorithms make 
probabilistic assumptions about the data, we require a score that can account for the inherent 
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uncertainty involved in making predictions. One of the few metrics that can capture all of that 
is the Kappa score. 
For multi-classification, Cohen's kappa coefficient (𝑘) is a statistic that is used to assess inter-
classsimilarity as well as intra-classsimilarity. Since it considers the potential that the similarity 
could have happened by chance, it is typically believed to be a more reliable measurement than 
a simple % agreement estimate. 

𝑘 =  
𝑝௢ − 𝑝௘

1 − 𝑝௘
 

where𝑝௢ is the probability of similarity between predicted and ground truth labels; and 𝑝௘ 
represents the probability that predicted and ground truth becomes similar by chance. The F1-
Score is a measurement that combines recall and precision. Generally speaking, it is referred 
to as the harmonic mean of the two. Another method of determining a "average" of values is 
the harmonic mean, which is typically seen as better suited for ratios than the conventional 
arithmetic mean. 
RESULTS AND DISCUSSION 
The dataset considered for the experiments and analysis is slightly imbalanced and hence the 
focal loss is used as suggested in [25]. The Adam optimization algorithm was used in 
combination with weigh decay mechanism. Weight loss in SGD and Adam is equivalently 
effective. For SGD, weight decay is the same as L2 regularization, but not for Adam. Weight 
decay and L2 regularization are not the same for Adam optimization algorithm. By re-
parameterizing the weight decay factor dependent on the learning rate, the two strategies can 
be rendered equivalent for SGD; but, as is sometimes overlooked, this is not the case for Adam. 
L2 regularization, in particular, causes weights with large historic parameter and/or gradient 
amplitudes to be regularized less than they would be if utilizing weight decay when combined 
with adaptive gradients. The weight decay is implemented based on the following mathematical 
expression; 
𝜃௧ାଵ = (1 − 𝜆)𝜃௧ − 𝛼∇𝑓௧(𝜃௧)where𝜆 represents the weight decay rate per training step; 

∇𝑓௧(𝜃௧) denotes the 𝑡௧௛ batch gradient and learning rate 𝛼. The value of different 
hyperparameters used in the model training process is given in the Table. XX. To increase the 
number of training images, data augmentation approaches were adopted.  
Table. Hyperparameter values 

Hyperparameter Value 

Weight Decay 0.0001 

Learning Rate 0.001 

Batch size 16 

Epochs 50 

# of neurons MLP 
block 

64 

Attention Dropout 0.2 
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Projection Dropout 0.2 

# of transformer 
blocks 

08 

 
In the architecture of EANet,the self-attention layers used in theVit are replaced with external 
attention. After a training of 50 epochs, the conventionaltransformer architecture which has 
0.6M parameters based classificationexhibited an accuracy level of ~89% test top-5 accuracy 
and ~64% top-1 accuracy. With same set of hyperparameters used in the experiments and same 
set of training samples, the EANetarchitecture which has 0.3M trainable parameters, showed 
higher accuracy of ~98% test top-5 accuracy and ~77% top-1 accuracy. This shall prove the 
effectiveness of external attention. 

 
Fig. Performance analysis of EANet Architecture 

The table given below summarizes the results of the experiments and the base line model 
(EANet) considered in this study. For effective investigation the kappa co-efficient is estimated 
for all the models. The results proved that the EANetcomposed of external attention mechanism 
with transformer technique exhibited better performance when compared to the other models 
in terms of precision, recall, and F1-Score. The pre-trained convolutional neural network 
performs poor when compared to the CNN+attention and EANet models. The class imbalance 
issue was handled by following the focal loss in combination with multi-class classification. 
Table. Comparison of EANet performance with other models 

Model F1 Score Accuracy Kappa Co-
Efficient 

EANet 0.895 98.6 0.92 

VGG + Attention 0.845 94.5 0.89 

VGG 0.813 91.2 0.85 

 
CONCLUSION 
Transformer based approach has performed well in classifying the microscopic images of steel 
alloys. The images are divided in to patches and sent to the transformer encoder block. The 
attention layer aids the model in extracting therelevant features from even the lowest layer 
across the entire image. The MLP (multi-layer perceptron) layer performs the classification 
task and predicts 1 out of K classes after processing the encoded input.The performance of the 
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image classification transformer model was improved; further research can be conducted to 
enhance the self-supervised training approach. A transformer-based method for fault 
segmentation in metal surfaces could also be developed as future research in the line of seq to 
seq transformer model. Additional scalability of the transformer-based strategy might result in 
reduced computational time and better performance. 
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