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Abstract: Path planning is one of the most crucial elements of autonomous driving (AD). Due 
to its capacity to directly make judgments based on observation and learn from the environ-
ment, learning-based path planning techniques are of interest to many academics. The stand-
ard reinforcement learning approach of the deep Q-network has made major strides in AD since 
the agent normally learns driving tactics simply by the intended reward function, which is 
difficult to adapt to the driving scenarios of urban roadways. However, such method-ologies 
rarely use the global path data to address the problem of directional planning, like turning 
around at an intersection. In addition, the link between different motion instructions like these 
might easily lead to an erroneous prediction of the route orders due to the fact that the steering 
and the accelerator are independently governed in a real-world driving system. This research 
proposes and implements a Provisional Cross-layered Deep Q-Network (PC-DQN) for path 
planning in end-to-end autonomous vehicles, where the universal path is em-ployed to direct 
the vehicles from the starting point to ending point. We employ the concept of Improved 
Harmony Search optimized fuzzy control (HIS-FC) and propose a defuzzification approach to 
increase the stability of anticipating the values of various path instructions in or-der to manage 
the reliance of distinct path instructions in Q-networks. We carry out extensive tests in the 
CARLA simulator and contrast our approach with cutting-edge approaches. The suggested 
strategy outperforms existing methods in terms of learning efficiency and driving reliability, 
according to experimental findings. 
Keywords: Autonomous vehicles, path planning, fuzzy logic, Provisional Cross-layered Deep 
Q-Network (PC-DQN), Improved Harmony Search optimized fuzzy control (HIS-FC). 
 
1.  Introduction 
In recent years, study on vehicles has seen fast growth, and it has expanded to span a variety 
of fields, such as robotics, computer science, and engineering, among others. In addition, it is 
important to mention that sci-entific progress has been achieved by auto-mobile manufacturers; 
yet, due to the finan-cial sensitivity of their work, these compa-nies do not often make the 
specifics of their methods or algorithms publicly available. The research on autonomous 
driving cars have been a subject of intense interest in both the business world and the academic 
world [1].An Autonomous vehicle systems could one day be able to take the place of human 
drivers and autonomously manage motion according to factors such as the sta-tus of the road 
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and the vehicle[2]. Therefore, autonomous cars are being examined as po-tential solutions to 
increase both the effec-tiveness of roads and the safety of driving. It is anticipated that, as a 
consequence of advancements in sensing technologies, elec-tronically controlled smart cars, 
technology, and machine learning will become more sophisticated and humanized [3]. 
Therefore, the development of choices- constructing and preparing systems for autonomously 
driving cars that are capable of navigating dynamic traffic conditions is an important area of 
study [4]. One of the primary re-sponsibilities of the modules responsible for decision-making 
and planning is to carry out an obstacle avoidance operation based on information from mixed 
perception. Making decisions, mapping out possible routes, and keeping track of where you've 
been are three of the most important aspects of a method of avoiding obstacles [5]. Thus, 
obstacle avoidance route planning for AD offers practical usefulness and applica-tion potential. 
Modules for route planning might provide a reference path that could navigate around obstacles 
while still adher-ing to the requirements for safe driving and vehicle dynamics limits [6]. The 
primary goal of providing a vehicle is arranging. with a route that is secure and free of poten-
tial collisions on the way to its destination. This must be accomplished while consider-ing the 
dynamics of the vehicle, their pow-ers for maneuvering in the presence of ob-stacles, as well 
as traffic regulations Re-garding the limits of roads. The planning process, which utilizes a 
significant amount of memory and places a significant demand on the computer's processing 
power is per-formed in tandem with the vehicle's other normal activities [7]. The Harmony 
Process (HS) method is now one of the most promi-nent metaheuristics that is used to address 
a vast range of diverse sorts of issues. In this research, we analyze the path planning for 
Autonomous vehicle using improved Har-mony search optimized fuzzy control. 
The further portion of the article includes part 2 indicates the Related works, part 3 describes 
the suggested work, part 4 indi-cates the result and discussion and part 5 indicates the 
conclusion.  
2.  Related Works 
In this paragraph of the article, we will discuss the other pieces of art relevant to the subject. 
The purpose of the study [8] is to offer a dynamic real-time path planning system for 
independent vehicles that can avoid both stationary and moving impedi-ments. The approach 
that has been devel-oped for the design of paths finds not only the best path, also the right rate 
of accelera-tion and cruising speed for a certain vehicle. The study [9]developing a system for 
obsta-cle avoidance route planning, the initial step is to create a safety model of obstacle 
avoidance. This is done by evaluating the way in which a human driver navigates around 
obstacles. The research[10] organize the several approaches to for the unmanned aerial 
vehicles, development impact (UAVs) that are currently available into three primary groups: 
the representational techniques, the cooperative techniques, and the non-cooperative strategies. 
Coverage and connection of the UAVs' network communication are evaluated and discussed 
using these methodologies. An evaluation of the current ideas has also been carried out, with 
each type of UAV path planning serving as the basis for the evaluation. The paper [11] 
presented an implementation an analysis of the little cuckoo search method, later propose a 
new parallel communica-tions plan. The unmanned robot's memory can be effectively 
preserved by the con-densed scheme. The parallel approach can improve precision and speed 
up conver-gence. The key limits for path planning are restricted data transfer capabilities, 
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electric-ity, and underwater sensor technologies. The maritime environment is exposed to a 
wide range of demanding variables, which can be classed as atmospheric, coastal, or 
gravitational. The undersea environment can be classified as predictable or unex-pected 
depending on whether the influence of these components can be approximated [12].The article 
[13] intends to investigate and assess the studies that have already been conducted in the field 
of coverage path planning issues, particularly those that make use of unmanned aerial vehicles 
(UAVs). In the research [14]a new based on reinforcement learning Algorithm for grey wolf 
optimization known as RLGWO has been released. as a potential solution to this issue. The 
suggested approach includes re-inforcement learning, in which the person is commanded to 
switch operations in an adaptive manner based on the collected per-formance. The author of 
[15] mentions that a path planning technique for autonomous vehicles. The goal of the 
algorithm is to generate man oeuvres that are both feasible and smooth in environments that 
are not structured. The study [16] take into consid-eration a more generic situation, which in-
volves many ground vehicles and numerous unmanned aerial aircraft. In this paper, they 
formalized the “multi-vehicle-assisted mul-ti-UAV path planning issue”, which is a du-al 
problem including the planning of routes and the assignment of tasks (RPTSP).The study [17] 
describes the research progress of path planning based on the multi-modality constraint. The 
research [18] offer a novel technique for path planning that is based on artificial potential field 
and ant colony op-timization (ACO). The technique that was suggested considers both dynamic 
risks and static impediments in order to construct an artificial field that represents the environ-
ment for the purpose of creating a path that avoids collisions. The paper [19] discusses compare 
and contrast certain controls used by three different Omni wheeled fire-fighting robots because 
of the range of agility that each offer. The research [20] offered a method for predicting the 
paths that mobile robots would take in the visible plane by employing an above camera and 
utilizing Type of interval -2 fuzzy logic (IT2FIS). In this essay, they discuss an ap-proach to 
obstacle-free path planning that is based on visual serving. Heuristic and con-ventional 
approaches are the two distinct classifications that may be used to mobile robots' approaches 
to the planning and exe-cution of their paths. The fact that analyti-cal approaches are too 
complicated for use in intangible applications is the primary flaw in the system; enumerative 
methods, on the other hand, are hampered by the sheer volume of the search area [21]. The 
study [22] makes use of fuzzy logic, taking into account a variety of criteria. After that, in order 
to compute the route planning, four strategies are utilized: an initial suggestion referred to as 
fuzzy logic, attraction, a PSO algorithm, and an ANFIS algorithm. 
2.1 Problem Statement 
Motion planning, also known as path planning (PP), is a computational trouble with which the 
goal is to identify a series of valid configurations that moves an item from its origin to its 
destination. The term is often used in the fields of computational geometry, computer 
animation, robotics, and computer gaming. The problem of PP is an essential part of the method 
for planning UAV missions, which must determine the most efficient path across the complex 
envi-ronment. PP is one of the most critical prob-lems in unmanned aerial vehicles (UAVs) for 
determining the best route between source and destination. Even if there are a lot of study 
suggestions on the problems of PP for UAVs in the existing literature, there are still problems 
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with target localization and identification. In this research, we pro-pose employing harmony 
search optimized fuzzy control to overcome the challenges associated with local path planning 
3. Proposed methodology 
As artificial intelligence technology has continued to advance, there has been a con-comitant 
acceleration in the development of autonomous vehicle technology. The per-formance of it on 
highways, including the precise journey path, has been described. Hardware and software make 
up the two primary components that make up autono-mous driving systems. The term 
"hardware" refers to the mechanical components of the system, include sensors, actuators, and 
Ve-hicle-to-Vehicle (V2V) hardware. Sensors are employed for the purpose of observing their 
surrounding environment. An actuator is utilized to run the subsystems of the vehi-cle. V2V 
equipment is installed on each ve-hicle  to allow for communication and the sharing of data 
between the cars. Perception, route planning, and command and control systems are all 
components of the software modules. The data gathered from the sen-sors is compiled by the 
perception module into a three-dimensional map of the area immediately surrounding the 
vehicle. This gives the car the ability to comprehend its surroundings, as seen in. After that, a 
design of the route can be planned out based on the commands given by the user. After gather-
ing information about the real-world setting, the control system will, as a last step, issue 
directives to the hardware of the vehicle. Detection and ranging of light, often known as 
(LiDAR), is an active-ranging technique that determines the separation between measuring 
items with the amount of time it takes for a laser light pulse to make a full circuit. Lasers have 
a minimal divergence, which helps to reduce power degradation; the measured distance can 
range up to 200 meters (m) even when exposed to bright sunshine. 
3.1 Provisional Cross-layered Deep Q-Network (PC-DQN) 
A PC-DQN form Reward-based learning that was used to manage the agent PC-DQN in so as 
to give commands acting devices like the gas pedal, the and the brake lever the steering wheel. 
This was accomplished through the use of a reinforcement learning approach called PC-DQN. 
In order to do this, descriptions of the development of the PC-DQN model procedure, and its 
reward system were necessary. PC-DQN can be ef-fective when applied to difficult judgements 
but necessitates the collection of an enor-mous amount of data, such as extensive state input, 
intricate the environment, nu-anced data on actions.  

 
Fig 1. Deep Q-Learning process 

In PC-DQN procedure, is depicted in Fig-ure 1, involves training a neural network to make an 
approximation of the Q-value function. The present state is utilized as the input, and a list of 
potential actions is pro-duced as the result. The PC-DQN paradigm is responsible for 
computing the purpose of rewards in order to select the appropriate action for a certain state. It 
also stores its experience in a queue of memory. After that, the model makes use of the 
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experiences stored in the memory buffer in order to train the target model, which determines 
the most effective method by which to maxim-ize its reward. 

 
Fig 2. Process to select the action in PC-DQN model 

Figure 2 shows the PC-DQN technique is trained by accumulating the optimal reward and state 
in a memory buffer. Model con-figuration, action configuration, reward configuration, and 
hyper parameter configu-ration make up the rest of this section. These four factors play crucial 
role in en-suring that the PC-DQN model learns in a way that is suitable for the trials. Below 
are the specifics for designing the control sys-tem. 
3.1.1 Model Setting 
PC-DQN is a neural network model with dense and buried layers and nodes. For each layer, 
we employ an activation function that is tailored to the specific user-defined data. The 
activation function will be set to a line-ar function unless the user changes it. Min-imizing 
gradient vanishing and explosion requires careful consideration of the activa-tion function 
configuration. 
3.1.2 Action Setting 
We define four actions in the action set-ting stage: forward, braking, and steering wheel 
movements within a 35-degree range. Depending on what the PC-DQN algorithm thinks, the 
gas and brake pedals will be pressed or released. 
3.1.3 Reward Setting 
Three rewards can be found in the reward configuration: the base reward , the penalty reward 
( ), and the bonus reward ( ). These should be specified as contin-uous functions to promote 
smooth and steady learning by the algorithm. We used a hyperbolic function with different 
reward weights for each possible outcome. Provid-ing a satisfactory answer will result in a bo-
nus payment of twice the original amount. A negative reward will be given if the agent comes 
up with a bad answer. Each reward condition serves a different purpose during training. The 
full compensation is presented as 

 𝐾 = 𝐾 + 𝐾 + 𝐾                 (1) 

As shown in Equation, the primary incen-tive ( ) is calculated based on the travel time between 
the vehicle and its final desti-nation ( ). (2), to create this incentive, the quadratic polynomial 
was used to assign a negative value to the farthest position and the highest value to the closest. 
This moti-vates the agent to travel there. By iterative-ly plugging values into the quadratic 
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poly-nomial equation, the maximum reward was found to be 3000, and the minimum found to 
be 9500. 

 𝑡 = −𝑒(𝑡 − 𝑝) + 𝑣                    (2) 

𝑡 = (𝑦 − 𝑦 ) + (𝑥 − 𝑥 )         (3) 

where is the travel distance,  and  are the x and y coordinates of the desti-nation,  and  are the 
x and y coordinates of the vehicle, and a, b, and c have values of 2.00, 98.00, and 3000, 
respectively. 
 , or penalty reward, is determined by comparing the distance learned from the LiDAR to a 
predefined target (4). The agent will be able to make judgements more quickly while still 
accurately detecting ob-stacles if the quantity of the LiDAR point cloud information is reduced. 
The move-ment towards the destination was slowed down by the introduction of a penalty in-
centive to encourage the dodging of obsta-cles. This equation is set up as a polynomial of the 
fourth degree, which is meant to sim-ulate human behavior. This penalty reward has a little 
positive value if the LiDAR finds the obstruction at its farthest location. The algorithm's 
decision-making is influenced by the penalty reward, which has a negative value when the 
space between the vehicle and an obstacle is lesser than 50 m and rap-idly declines when it is 
less than 15 m and approaches 0 m (the critical point). Dis-tances needed to halt from 40 
kilometers per hour are used to determine the crucial zones. By using trial and error, we were 
able to calculate penalty reward coefficients that strike a balance between the primary reward 
and the separation between the ve-hicle and the obstacle. 

𝐾 = 𝑒 𝑡 + 𝑒 𝑡 + 𝑒 𝑡 + 𝑒 𝑡 + 𝑒   (4) 

𝑡 = 𝑚𝑖𝑛 𝑦 + 𝑥 + ℎ ,         (5) 

Where ,  and  are scalars of distance vectors from the vehicle to the barrier and signify the 
nearest identified places. Coeffi-cients a1, a2, a3, and a4 are 0.0011, 0.15, 6.60, and 145, while 
a5 is 3040. If the agent is able to avoid collisions throughout the episode, they will get an 
additional prize ( ) on top of their regular payout. When the vehicle is able to stop within 10 
meters of the obstruction, an additional prize is added. The motivation was intended to in-
fluence safe driving practices. In terms of swaying, one's decision, this reward is sub-stantial. 
The incentive is shown as 

𝐾 = 𝑝 𝑦 + 𝑝 ,          (6) 

Where  is the distance between the ve-hicle and the obstacle. Both  and   are assigned the values 
of 200.00 and 2200. 
3.1.4 Hyper parameter setting 
When considering the network architec-ture and the training process, the hyper pa-rameter 
values may be broken down into two distinct categories. Number of hidden layers, number of 
units, dropout, network weight initialization, and activation func-tion are all examples of 
network structure hyper parameters. 
3.2 Improved Harmony Search optimized fuzzy control (HIS-FC)  
3.2.1 Harmony Search 
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In 2001, Zong Woo Geem was motivated to create the harmony search algorithm af-ter seeing 
the improvisational process of jazz bands. There is a one-to-one corre-spondence between the 
musicians and the decision factors, with the pitch range of each instrument representing the 
possible values for those variables. For this example, the band's ability to create musical 
harmony is represented by a solution vector, and the degree to which their performance is well 
received by the public is represented by the objective function. The five-stage HS method is as 
follows: At this stage, the op-timization problem and the values for the HS technique's variables 
are set as the har-mony memory size (HMS), which is equiva-lent to the solution vectors saved 
in the memory; HMCR denotes harmony memory considering rate; PAR denotes pitch adjust-
ing rate. To begin, the harmony memory (HM) is given a random set of solution vec-tors 
created by the HMS.  
An improvised new harmony: Here, we construct a New Harmony vector by using a trifecta of 
methods: randomization, memory recall, and pitch manipulation. Memoran-dum on the subject 
of harmony: The New Harmony vector replaces the poorest har-mony of the HM if and only if 
it has a better objective function value. The highest goal function solution is chosen after all 
itera-tions. 
3.2.2 Improved HSA 
The HSA has five phases: initialization of parameters, harmony memory initialization, 
improvisation of a New Harmony, harmony memory update, and termination criteria 
verification. We propose modifications to the algorithm's overall structure and a New Harmony 
improvisation step in an effort to enhance the result quality, decrease compu-tational load, and 
make the technique less sensitive to the HS parameters. In its sim-plest form, HS constructs a 
New Harmony vector using memory consideration, random selection, and pitch modification. 
The IHS technique uses memory consideration and random selection to create a New Harmony 
vector without pitch modification. The sec-ond difference is how the two procedures are done. 
The New Harmony vector is inno-vated using a single technique that applies to all its 
components, unlike the traditional HS, which uses a different procedure for each vector part. 
As a result, "good" solu-tion vectors fill up the HM memory much more quickly than they do 
in the standard HS algorithm. 
Where n is the total amount of decision variables, the optimization problem is first identified 

𝐺 ≤ 𝐺 ≤ 𝐺 , 𝑖 = 1,2, … , 𝑛. . Defines the possible values for the 𝑖  decision vari-able. In this 

stage, the HS algorithm param-eters are also specified: The solution vec-tors (HMS) and 
HMCR are what make up the harmony memory.  

𝐻𝑀 =

⎣
⎢
⎢
⎡

𝐺 𝐺 𝐺 … 𝐺

𝐺 𝐺 𝐺 … 𝐺
⋯ ⋯ ⋯ ⋯

𝐺 𝐺 𝐺 𝐺 ⎦
⎥
⎥
⎤
            (7) 

The inspection teams are dispersed at random around the city, and each building block is given 
to the inspection crew that is geographically closest to it. 
3.2.2.1 New Harmony improvisation 
In third step, a New Harmony vector (NHV) is created by a combination of ran-dom selection 
and taking memory into ac-count. 
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The  design variable (the location where the  inspection team will begin its work) is picked at 
random using a random selection technique with probability 1-HMCR and using a random 
selection from HM memory with probability HMCR. These two methods for creating a NHV 
may be used to both discrete and The second dif-ference is how the two procedures are done. 
The New Harmony vector is innovated us-ing a single technique that applies to all its 
components, unlike the traditional HS, which uses a different procedure for each vector part. 
optimization issues. Thus, the following is a description of how the New Harmony vector 
production is done for dis-crete optimization problems: 

𝐺 =
𝐺 ∈ 𝐺 , 𝐺 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝐻𝑀𝐶𝑅

𝐺 ∈ 𝐻𝑀 = 𝐺 , 𝐺 , … . , 𝐺 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐻𝑀𝐶𝑅
(8) 

Where each new solution Vector s is de-fined according to either the first or the sec-ond 
functions of Eq (8). 
3.2.2.2 Harmony memory update 
Harmony vector is superior to the worst harmony vector of the HM in terms of the value of the 
goal function, the worst harmo-ny is replaced by the New Harmony vector. Once all possible 
iterations have been ex-hausted, the solution with the highest value of the objective function is 
selected, and the pathing problem 

𝐿(𝑏) = ∑ 𝑡 ( ), ( ) + 𝑡 ( ), ( ) (9) 

𝑚𝑖𝑛 ∑ 𝑡(𝐺𝑃 , 𝐺𝑃 )
( )

+ 𝑡 𝐺𝑃 ( ) , 𝐺𝑃 , 𝑗 = 1, … , 𝑀                   (10) 

            
The path problem of equations (9) and (10) is formed and solved for each district based on the 
best solution obtained once all iterations are complete and the objective function value is 
known. Figure 3: The fun-damentals of the IHS methodology. 

 
Fig 3. Flowchart of the improved harmony search algorithm 

3.2.3 Fuzzy Logic  
In a real-world driving system, motion in-structions like the steering angle and the accelerator 
are individually regulated, but the outgoing commands are related with one another since an 
action may be chosen in the condition PC-DQN. Applying motion instructions directly in 
autonomous driving will result in poor precision and erratic be-havior. Multiple control 
parameters are of-ten returned by fuzzy control systems. When used in control systems, 
defuzzifica-tion of the fuzzy outputs solves the problem of many association instructions in 
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PC-DQN. Based on the principles of fuzzy con-trol, we present a fuzzy logic approach in PC-
DQN and include a defuzzification technique into our methodology. 
The steering angle and the accelerator are considered as motion instructions in our motion 
planning technique. For the steering angle, five fuzzy variables are created: 𝐸 =

𝑒 , 𝑒 , 𝑒 , 𝑒 , 𝑒 , where 𝑒  denotes a straight line. Turning to the right by a lesser 

margin is denoted by 𝑒 , whereas a wider margin is indicated by  𝑒 . For a turn to the left, a 

lower 𝑒  value indicates a more subtle turn than a bigger 𝑒  value. Also, for the accelerator, 

we have five discrete fuzzy variables represented by the equation 𝐸 =

{𝑒 , 𝑒 , 𝑒 , 𝑒 , 𝑒 }, where 𝑒  stands for no acceleration and no deceleration. 
Acceleration of a lesser magnitude, denoted by 𝑒 , and a bigger magnitude, denoted by e𝑒 . 
A lesser rate of slowing is indicated by 𝑒 , whereas a bigger rate of slowing is indicated by 
 𝑒 . 

At each time step, the output layer of the Q-network is used in existing DQN-based systems 
for autonomous driving to generate an action that couples the steering angle and the accelerator. 
We use two fuzzy sets since the steering angle and the accelerator are both output motion 
instructions. We refer to the two halves of the action representation of motion instructions, Eg 

and Ee, as fuzzy sets. Let 𝑊 = 𝑤 𝑒 , 𝑤 𝑒 , 𝑤 𝑒 , 𝑤 𝑒 , 𝑤 𝑒  and  𝑊 =

{𝑤(𝑒 ), 𝑤(𝑒 ), 𝑤(𝑒 ), 𝑤(𝑒 ), 𝑤(𝑒 )}  be the values returned by the units that make up 
the accelerator and the steering angle, respectively. 

Since the output layer employs the SoftMax activation function, the values in 𝑊  and 𝑊 also 
span the same 0–1 interval as the probability of the motion instructions in Eg and Ee. From a 
fuzzy logic perspective, the degrees of membership of motion commands may be thought of as 
belonging to the probability sets 𝑊  and 𝑊 . Since the core of motion planning for 
autonomous driving is a kind of automated control problem, maximum defuzzification is a 
well-known and widely applied technique in the area of automatic control. Furthermore, 
because all of the FC layer's neural nodes contribute equally, we utilize the mean value of the 
five fuzzy variables outputted by the FC layer's neural nodes as the numerical values of the 
steering angle and accelerator at a time step d, which can be written as (3). 

𝑒 = ∑ 𝑒 , 𝑒 = max
∈

𝑤(𝑒 )

𝑒 = ∑ 𝑒 , 𝑒 = max
∈

𝑤(𝑒 )
    (11) 

where the ultimate values of the steering angle and the accelerator at time step d,  are 𝑒  and 

𝑒 , respectively. The degree function W(.), which is also the likelihood of the associated 
motion instructions, is a measure of how closely a group of people are connected. Maximum 
degrees of membership for the actions of steering angle 𝑀  and accelerator 𝑀  are denoted by 

their corresponding numeric values. 

4. Result and discussion 
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This section provides a description of our experiments and a report on the performance of our 
technique in the CARLA, which is an open simulator for autonomous driving that helps with 
the creation, training, and validation of autonomous urban driving systems. CARLA has visuals 
that are more realistic, urban layouts, a multiplicity of vehicle models, buildings, people, street 
signs, and other elements, which makes it a better option for testing directional planning for 
autonomous driving.  

4.1 Training Setup and Data Analysis 
The CARLA models a town with a two-way road that has lanes for both vehicles and 
pedestrians. Figure 4 depicts a map of the town (a). The two predetermined routes for training 
are represented by the red curve and the blue line, while the four predefined routes for testing 
are represented by the green curve, the cyan curve, the orange curve, and the black curve. The 
routes' starting points and final destinations are shown by the hollow and solid circles, re-
spectively. The image of the driver's per-spective acquired by the front RGB camera is shown 
in Figure 4(b). Therefore, we do not include elements like as traffic signals, speed restrictions, 
or impediments like oth-er vehicles or pedestrians in the scenarios in order to focus on testing 
the performance of turning as directional planning and lane fol-lowing. To do this, we installed 
an RGB camera facing the driver to collect data about the surrounding area. The simulator's 
original image was taken at 800 pixels by 600 pixels in size. 

 
Fig 4. CARLA simulator. (a) Map with defined routes (b) an image of the driver view 

captured by the front facing RGB camera [26] 
We record at a frame rate of 5 frames per second (fps) throughout both the training and testing 
phases to minimize data redun-dancy. As shown in Fig.7(a), we create two routes for training 
that comprise a variety of road types such as straight line and junc-tions so that the model may 
learn to drive in a straight line, turn left, and turn right. Both paths add up to a total of 402 m, 
however the shorter one is just 214 m long. Both of these routes need drivers use a variety of 
maneuvers, such as a straight line, left turn, and right turn, to reach their destinations. Prior to 
the actual training, the routes are manually segmented into individual, con-secutive points. Our 
trials include millions of iterations of training to teach the model the best strategy for motion 
planning. Each round, the vehicle randomly chooses a global course from the two 
predetermined routes and travels until it crashes, finishes the route, or drives off the road (over 
80% overlap with the sidewalk).  
The vehicle motion choice is randomly selected from the first 200,000 allowable actions during 
training. From step 200,000 to 1,000,000, the vehicle motion choice is randomly determined 
with a probability or created using the suggested PC-DQN. In this phase, probability linearly 



INTELLIGENT PATH PLANNING TECHNIQUE FOR AUTONOMOUS VEHICLES USING IMPROVED HARMONY SEARCH OPTI-MIZED 

FUZZY CONTROL 

Journal of Data Acquisition and Processing Vol. 38 (1) 2023      3999 
 
 

declines from 0.99 to 0.05 and stays at 0.05. The suggested strategy is tested using four more 
routes (R3, R4, R5, and R6), indicated by the green, cyan, orange, and black curves, 
respectively. To verify the effectiveness of the proposed method, we compare our pro-posed 
method with three existing methods. Existing methods such as SVM [23], CNN[24], and 
LSTM[25]. The proposed system’s accuracy (A) is defined as the pro-portion of the total 
number of correctly planned path. Figure 5 and Table 1 depict the proposed method's prediction 
accuracy on various paths planning technique. From the figure 5, it is clear that, the proposed 
method has a higher accuracy when com-pared to conventional methods. 

 
Fig 5. Comparison of accuracy 

Table 1. Accuracy computation analysis 
Methods Accuracy (%) 

SVM [23] 82 

CNN [24] 87 

LSTM [25] 85 

PC-DQN+HIS-FC 
[Proposed] 

97 

 
The term "successful episode" refers to how well an autonomous vehicle's planning process 
went in getting it to its destination without any complications. Figure 6 and table 2 depicts the 
comparison of the pro-posed method’s successful episode with conventional methods. Figure 
6 shows that the proposed method has a higher successful episode than conventional methods. 
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Fig 6. Comparison of successful episodes 

Table 2. Successful episodes computation analysis 

Methods 
Successful 

episodes (%) 

SVM [23] 80 

CNN [24] 83 

LSTM [25] 87 

PC-DQN+HIS-FC 
[Proposed] 

98 

 
The difficulties an autonomous vehicle encounters on the way to its destination are referred to 
as "collision episodes." The col-lision episode between the suggested ap-proach and traditional 
methods is shown in Figure 7 and table 3. The proposed method has a much lower collision 
episode than traditional methods, as seen in the figure 7. 

 
Fig 7. Comparison of collision episodes 
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Table 3. Collision episodes computation analysis 
Methods Collision episodes (%) 

SVM [23] 25 

CNN [24] 27 

LSTM [25] 30 

PC-DQN+HIS-FC [Proposed] 9 

 
To describe a sequential decision-making process, the learning efficiency method is utilized to 
define the motion planning issue for autonomous driving. Figure 8 and table 4 illustrate the 
comparative effectiveness of the suggested method and the more tradi-tional approaches of 
learning efficiency. As can be seen from the figure 8, the learning efficiency of the suggested 
method is signif-icantly higher than that of more traditional methods. 

 
Fig 8. Comparison of learning efficiency 

Table 4. Learning efficiency computation analysis 
Methods Learning efficiency (%) 

SVM [23] 81 

CNN [24] 84 

LSTM [25] 89 

PC-DQN+HIS-FC [Proposed] 96 

 
An autonomous vehicle's execution time is the amount of time it needs to carry out its plan to 
determine the other vehicle's tra-jectory or course and take appropriate ac-tion to prevent a 
collision. Figure 9 and ta-ble 5 illustrate the comparative effective-ness of the suggested 
method and the more traditional approaches of execution time. As can be seen from the figure 
9, the execution time of the suggested method is lower than that of more traditional methods. 
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Fig 9. Comparison of prediction time 
Table 4. Prediction time computation analysis 

Methods Execution time (s) 

SVM [23] 30 

CNN [24] 37 

LSTM [25] 45 

PC-DQN+HIS-FC [Proposed] 25 

 
The suggested approach is compared to certain existing techniques, including SVM [23], CNN 
[24], and LSTM [25], in Figures 4 to 8. The recommended technique outper-forms the already 
used methods in terms of performance due to the shortcomings of the latter. The strategies now 
in use have the following drawbacks. When a dataset over-laps, the SVM method performs 
poorly, CNN fails to capture object orientation and position, and LSTM is not well suited for 
learning tasks like route prediction when the input data is not a sequence. 
5. Conclusion 
To address the problems of both continu-ous and discrete outputs in DQNs, this re-search 
proposes a unique Provisional Cross-layered Deep Q-Network for use in fully autonomous 
driving systems.  
To further address the problem of inde-pendence among various motion commands, we suggest 
an HIS-FC approach for the pro-posed PC-DQN. The suggested PC-DQN with HIS-FC 
outperforms state-of-the-art approaches in making direction plans in ac-cordance with a 
specified global route. The suggested strategy also outperforms other methods in terms of 
learning and driving stability. Since the suggested technique does not consider road 
impediments like vehicles and pedestrians, we want to ad-dress the problem of obstacle 
avoidance and include traffic signals into our model in our future work. 
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