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ABSTRACT 
There are numerous modern data science challenges that make use of graphs (networks) as a 
representation of data, including those dealing with social, biological, and communication 
networks. There has been a rise in the use of signal processing and ML techniques for graph-
based data analysis in the past decade. The prevalence of graphs and graph-based learning 
challenges across a wide range of applications has increased the interest in exploring 
explainability in graph data science. Since identifying communities is the first order of business 
when mining graphs for insights, we'll utilise that as a lens through which to investigate the 
challenge of explaining graph data science. Communities are formed when people with shared 
interests get together, and they are dense subnetworks of the larger network. Though many 
approaches to community discovery work well with artificial networks that have a clear 
modular structure, the quality and impact of these algorithms' results when applied to real-
world networks with a more nuanced modular structure are less certain. In this paper, motivated 
by recent advances in explainable AI and ML, we offer methods and metrics from network 
science to quantify three separate elements of explainability in the context of community 
detection: interpretability, replicability, and reproducibility. 
1. INTRODUCTION 
Model explainability, interpretability, and reproducibility 
Data is fed into the model, and then the model "does its thing" and spits out a prediction. The 
lack of clarity is problematic in many ways, and is often encapsulated by the vaguely related 
concepts of explainability, interpretability, and reproducibility. 
• Explainability: Providing the human-friendly explanation of how a Machine Learning 
(ML) model works 
• Interpretability: Indicates the ability to: 
o Learn how model inputs, features, and outputs are connected. 
o Anticipate outputs based on inputs. 
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• Reproducibility: means that the model may reliably be used to get the same results 
given the same inputs 
CML's end-to-end model governance and monitoring process attempts to eliminate the 
blackbox aspect of most machine learning models and provide greater insight into an 
organization's machine learning operations. 
White-box or translucent models are another name for this type of model. Within the realm of 
Data Science, black-box models and white-box models are often seen as two opposite ends of 
the spectrum (see Figure 1).  
  

 
Figure 1: Interpretability (left) vs performance (right) spectrum in Data Science. 

  
Massive warehouses of structured data, where the structure itself reveals vital information 
about the data's nature, are the norm in modern data analysis. Many times, graphs (a 
mathematical tool) are used to show the structure of such data.  
These days, everyone knows everyone else. Information gathered from complex networks of 
people, things, and money becomes widely available. The machine learning community has 
also shown a lot of enthusiasm for processing and analysing network data during the past few 
decades [1, 2, 3]. Interdependencies between data elements in the form of pairwise 
relationships are just one example of how the network structure inherently transmits 
information about the data. Graphs and other mathematical representations have long been used 
to convey these characteristics. 
In this setting, novel tendencies and difficulties have been rapidly emerging. Take, for instance, 
the relationship between a network of protein-protein interactions and the temporal variation 
in gene expression. Discovery of important genes (through protein grouping) affected by the 
infection and prediction of how the host organism reacts (in terms of gene expression) to 
infections over time are two typical tasks in network biology involving such data that can 
advise the optimal intervention techniques. 
 
2. LITERATURE REVIEW 
Graphs are a special kind of database that may be used to depict the relationships between a 
collection of "nodes" (edges). Researchers have been putting a lot of effort into finding ways 
to use machine learning to analyse graphs because of their flexibility. Graphs are used 
extensively in fields as diverse as social science (social networks; Wu et al., 2020), physics 
(Sanchez et al., 2018; Battaglia et al., 2016), and biology due to their flexibility as a 
representational tool (protein-protein interaction networks; Fout et al., 2017). That was the 
conclusion reached by researchers (Khalil et al., 2017). 
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In the field of machine learning, graph analysis stands out as a distinct subset of non-Euclidean 
data structures due to its major focus on node categorization, link prediction, and clustering. 
Graph neural networks (GNNs) are a powerful tool in the field of deep learning. GNN is widely 
used because of its effective outcomes in graph analysis. Following is an example-filled 
breakdown of the fundamental concepts underlying graph neural networks. 
The long tradition of graph neural networks is a major inspiration for GNNs. In the 1990s, 
researchers first began implementing recursive neural networks onto directed acyclic graphs 
(Sperduti and Starita, 1997; Frasconi et al., 1998). Then, in an effort to deal with cyclical 
patterns, two types of neural networks—Recurrent Neural Networks and Feedforward Neural 
Networks—are introduced to the area (Scarselli et al., 2009; (Micheli, 2009). Both approaches 
aim to construct state transition systems on graphs and iterate until convergence, which 
severely limits both their scalability and their describability. 
GNNs have been rediscovered thanks to advancements in deep neural networks, most notably 
convolutional neural networks (CNNs) (LeCun et al., 1998). Improvements in nearly every 
domain of machine learning led to the development of CNNs, which can extract multi-scale 
localised spatial data and integrate it to produce highly expressive representations (LeCun et 
al., 2015). Typical characteristics of CNNs include the use of numerous layers, shared weights, 
and local connections (LeCun et al., 2015). In addition, these are essential in addressing 
problems that can be represented as graphs. Even while data structures like pictures (2D grids) 
and texts (1D sequences) can be thought of as examples of graphs, CNNs can only handle data 
that conforms to the standard Euclidean format. This makes it simple to generalise CNNs on 
graphs.  
 

 
Fig. 2. Images in Euclidean space are shown on the left. Exactly: a graph in a space other 

than Euclidean space. 
  
The challenge of creating localised convolutional filters and pooling operators makes it hard to 
transfer CNN from the Euclidean domain to the non-Euclidean domain (see Fig. 2). Bringing 
the benefits of deep neural models to non-Euclidean environments is the focus of geometric 
deep learning, a burgeoning area of research (Bronstein et al., 2017). To be more specific, this 
term is being used to describe the widespread interest in using deep learning on graphs. 
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GNN models are the primary topic of the most recent GNN survey articles, such as those by 
Zhang et al. (2018b), Wu et al. (2019a), and Chami et al. (2020). In their classification of 
GNNs, Wu et al. identify four distinct subtypes: recurrent graph neural networks, convolutional 
graph neural networks, graph autoencoders, and spatial-temporal graph neural networks 
(2019a). Two recent studies, Zhang et al. (2018b) and Chami et al. (2020), present thorough 
overviews of graph deep learning approaches, with the latter proposing a Graph Encoder 
Decoder Model to integrate network embedding and graph neural network models. In this 
research, we present a novel categorization system for these techniques, with an emphasis on 
the classic versions of GNNs. In addition, we provide a detailed account of the many fields to 
which GNNs have been applied and an overview of GNN variants for the many different kinds 
of graphs. 
There have also been some surveys that have looked at specific areas of the graph learning 
environment in depth. Two excellent surveys of adversarial learning on graphs, covering both 
attacks and defences against graph data, may be found in Sun et al. (2018) and Chen et al. 
(2018). (2020a). The attention models for graphs are thoroughly reviewed by Lee et al (2018a). 
In a paper due out in 2020, Yang et al. demonstrate a technique for learning representations of 
networks with diverse nodes and links. Huang et al. provide a thorough analysis of the state-
of-the-art in GNN models for dynamic graphs (2020). Peng et al. provide a concise summary 
of methods for combinatorial optimization using graph embeddings (2020). Conclusions about 
GNNs for heterogeneous graphs, dynamic graphs, and combinatorial optimization are drawn 
in Sections 4.2, 4.3, and 8.1.6, respectively. 
3. GSP FOR EXPLOITING DATA STRUCTURE 
Modeling, analysing, and manipulating graph-based data are all possible with GSP. For the 
sake of argument, let us assume that there are N nodes in set V and N less edges in set E. Our 
discussion will centre around the acyclic, weighted graph G V =,E. With the help of the 
function x:V " R, a scalar value is assigned to each node in a graph. So, GSP is primarily 
concerned with incorporating graph signals within the purview of more conventional signal 
processing techniques. The so-called graph Fourier transform, defined in terms of the 
eigenvectors of the graph Laplacian matrix or a graph shift operator (a generic matrix 
representation of the graph), is a significant recent development in the field (GFT). Laplacian 
L D = - W is a well-known example, where W is the weighted adjacency matrix of the graph 
and D is the degree matrix. 
This insight can be applied in two different contexts. To start, the idea of frequency, which 
helps establish a measure of smoothness for signals on graphs, allows for a fresh perspective 
on the theory of kernels and regularisation on graphs [8]. The second benefit is that it allows 
for the generalisation of techniques such as convolution and frequency-domain filtering to 
graph signals. Therefore, with the aid of cutting-edge instruments made feasible by GSP-based 
principles, we may make use of established understanding of data structures and relationships. 
Since their inception, they have been put to use in numerous machine learning problems. Using 
examples from both supervised and unsupervised learning scenarios, we explain how to apply 
GSP when the underlying graph is already known or can be inferred from observations of 
different variables (for more on this topic, read the "Inference of Hidden Relational Structure 
for Interpretability" section). 
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3.1 Regression for multiple response variables  
Learning a mapping from a set of inputs (or features) to a real-valued output is what regression 
aims to do; it is one of the simplest forms of supervised learning (or response). Learning such 
a mapping for a large number of response variables is crucial in the larger problem of 
multivariate regression. Modeling the relationships between response variables is a common 
concept used in modern methods. Both the coefficients of a multivariate autoregressive process 
in a parametric model and the kernel function of a multioutput Gaussian process in a 
nonparametric model can be thought of as representations of these sorts of relationships (GP). 
For modelling interactions between response variables, separable kernels for multioutput GP 
use a positive semidefinite (PSD) matrix as part of the kernel function.  

 
to which a hyperparameter an is added, where I is an identity matrix. Keep in mind that the 
filter matrix B, a function of the network Laplacian L, encodes the relationships between the 
data points acquired by each node. The authors of [10] suggest a GP model on graphs with a 
kernel function similar to that of a multi-output GP by building the PSD matrix between 
observations of the response variables using B. 
3.2 Classification using graph theory 
Classification is an essential type of supervised learning that is quite similar to regression 
except that it uses a categorical response variable. Most notably, recent developments in deep 
learning have enabled significant gains in applications like image classification thanks in large 
part to the use of convolutional neural networks (CNNs). However, due to the absence of the 
notions of shift and convolution in the irregular graph domain, standard convolutional neural 
networks (CNNs) cannot be utilised directly to categorise signals that rest on a graph structure. 
To combat such an issue, GSP is an effective technique. To be more specific, the graph spectral 
domain, when supplemented with a concept of frequency and a GFT, can be used to explain 
convolution implicitly. Here we consider a graph with a signal x and a convolution kernel gt () 
m defined on the Laplacian eigenvalues of the graph. Multiple definitions exist for the xg 
convolution.  

 
3.3 Graph-based clustering and dimensionality reduction  
Clustering and dimensionality reduction are two of the most studied topics in unsupervised 
learning, another fundamental paradigm in machine learning. Clustering algorithms that rely 
on graph theory often use a similarity graph to partition a large set of nodes into smaller, more 
manageable clusters. Many network science and machine learning experts have studied this 
phenomenon. Among the many methods developed during the past two decades, spectral 
clustering has seen explosive growth in popularity. 
The notions supplied by GSP have been useful in a number of similar contexts, despite the fact 
that graph-based clustering does not often contain node properties (i.e., graph signals). 
Multiscale clustering is a technique where many clustering results are sought, each of which 
represents a separate grouping of nodes at a different scale, as the name suggests. Transforms 
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that operate on several scales in signal processing, such as the wavelet transform, offer a 
practical alternative to traditional methods that require adapting concepts like modularity to the 
multiscale setting. 
3.4 GSP for improving efficiency and robustness  
The original goal of Graph Structured Programming (GSP) was to provide a framework for 
using graphs in data analysis; nevertheless, many traditional machine learning methods have 
found success by adapting some of GSP's core methodology and tools. For tasks like (semi-
)supervised learning, few-shot learning, zero-shot learning, and multitask learning, improved 
resistance against sparse and noisy training data or hostile instances has been shown. 
Computing complexity and time required for graph-based learning can be reduced by using 
simple GSP operations like sampling and filtering in big data processing and statistical 
learning. 
CONCLUSION 
In recent years, graph neural networks have evolved into potent and practical tools for use in 
graph-based machine learning applications. These innovations are the result of progress made 
in the areas of expressive capability, model flexibility, and training methods. Graph neural 
networks are the focus of this survey. In our novel GNN models, we introduce variants that 
vary in the computing modules they use, the kinds of graphs they employ, and the ways in 
which they are trained. We also offer a number of theoretical evaluations and overviews of 
several overarching frameworks. Utilizing a taxonomy-based framework, we evaluate GNN 
applications in both structural and non-structural settings, as well as a brief overview of other 
settings. Finally, we propose four open topics—resilience, interpretability, pretraining, and 
modelling complex structures—that point to the most pressing challenges and interesting future 
study fields for graph neural networks. 
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