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Abstract— In our attempt to simulate blood flow through arteries mathematical modelling for 
cardiovascular system are popular. These mathematical models are also used to predict the 
dynamical patterns in the pathological and psychological condition. Due to complexities 
arising out of mechanical properties of the arterial wall, time dependence and the underlying 
geometry, any comprehensive model is difficult to find. At some level, simplification attempts 
have been made up to various degrees, in accordance with the scale of the phenomena under 
our study. Agrawal, B., Kumar, S., Rakshit, S. (2022). shows a mathematical study of the flow 
of the non-Newtonian fluid, blood through arterial segment affected by stenosis [20].  
 The physical dimension of the model is one of our concern. Like electrical circuits, different 
complex regions of the vascular system are collected in simple compartments and connected 
to form a closed loop. The desired degree of detail has a correlation with the number of blocks. 
Many zero-dimensional models (also known as lumped parameter model) have been developed 
for the cardiovascular system in general or for its specific parts. Usage of such an approach 
preferred at the developing a model for the circulatory system becomes a possibility. Although, 
they do not provide any information on the mechanical fluid-wall interaction, but they provide 
the evolution of the mean flow variables. 
One dimensional models are in used, when we deal with the wave Propagation phenomena. 
Over the cross section, the flow motion equations are arranged, thus obtaining the one 
dimensional models. A high degree of approximation is included keeping in mind the 
hypothesis that one spatial dimension is prevalent over the others. In our study we have dealt 
with a simple one-dimensional model for fluid structure problem describing the flow of blood 
and the wave propagation in a segment of an artery. The arterial wall is thought of as an 
axisymmetric membrane that can be deform either in radial or longitudinal direction under the 
action of the force exerted by the fluid.  
Khan, R. A., & Agrawal, B. D. (2021) present explanatory solutions for transient flow of 
Newtonian fluid through miniature channels with Navier slip limit. The induction of the 
arrangements depends on Fourier arrangement development in space [16]. In (2021) IA Tantry, 
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S Wani, B Agrawal shows the effect of radiation on steady MHD boundary layer flow over an 
exponentially stretching sheet was investigated [17].  
Keywords—Digital optimization, artificial intelligence, internet connectivity, cybersecurity, 
governance, internet of things. 
 
I. INTRODUCTION 
1. Wall and fluid interaction 
The blood flowing in a compatible vessel is a complex dynamic system and is a real problem 
with the fluid structure. Fluid movement and wall deformation are mutually affected and their 
coupling is responsible for effects that cannot be explained by each alone. When interested in 
the phenomenon of wave propagation, simplified models of the "arterial blood wall" system 
can be devised. In particular, due to the small deformations of the vascular wall and the 
unidirectional nature of the blood flow, a one-dimensional model was adopted. Khoja, I. M., 
& Agrawal, B. (2021) Show that the blood pressure is influenced by both of the cross-sectional 
area and the length of the blood vessel [21]. 
 
1.1 The flow equations 
Let us consider a homogeneous fluid in terms of density   and viscosity , flowing in a straight, 
axial, distributable tube of circular cross-section. 
The intersecting quasi-1D momentum equation is 
 

              
1v v p

v f
t x d x

  
  

                                                 (1) 

   
Where x is the axial ordinate, is the axial velocity,  the transient pressure, both averaged over 
the cross section, and t denotes time. The viscous term   is approximated by the friction term 
of a constant Poiseuille flow in a tube of radius . 

               f  ≃ 
2

8 v

dR


                                                                     (2) 

 
As a consequence, the wall shear stress is given by 
 

                
R

dv

dr
    ≃   

4 v

dR


                                                                    (3) 

 
Strictly speaking, expressions (2) and (3) carry a constant flow in a solid tube, but are 
considered acceptable for quasi-stationary flows and for small deformations. 
The principle of conservation of mass in a deformable tube is expressed by the following 
continuity equation 
 

            0
2
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                                                             (4) 
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1.2 The Wall equation 
The vessel wall is modeled as a symmetrically elastic membrane, which is a thin two-
dimensional envelope with negligible mass (wall thickness  0) compared to the fluid in it. The 
membrane, which does not have bending stiffness, is able to deform under the forces exerted 
by the fluid (that is, shear stress - cfr. (3) - and transient stress p). Suppose    are the Lagrangian 
coordinates of a particle P with   a parametric coordinate along the membrane in its plane of 
symmetry. In such a frame of reference, the major deformation ratios are in the meridional and 
circumferential directions, respectively 
 

          

2 2

1

p p
dr dx

ds ds


   
    
   
   

,
2

p
r

R
                                                                 (5)                                                                                                                          

 
Where   is the unreformed radius (corresponding to the zero transmural pressure). 
Since the fluid equations are expressed in Euler coordinates, let us perform a coordinate 
transformation and let us indicated by R   and S  the Eulerian counterparts of the Lagrangian 
coordinates for a particle of the membrane. In this coordinate system, the extensions (5) are 
written as 

'2

'21

1 R

S
 
        ,    

*2

R

R
                                                                 (6) 

(the prime denoting x-derivative). The membrane equilibrium equations in tangential and 
normal directions are provided   

   2
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Let us now introduce a constitutive equation for the arterial vessel which gives an expression 
for T1 and T2 in equations (7). For an incompressible hyper elastic material, it is possible to 
define the strain-energy function   as a function of the main strains: it represents the elastic 
energy stored per unit volume in terms of strain and stress variables. 
A constitutive stress-energy density function   modeling of the mechanical properties of the 
arterial wall was proposed by Zhou and Fung as. 
 

 
0

1 ,Qu c e         2 2

1 1 2 2 3 1 2
2Q c E c E c E E    ,                               (8)  

 

where 0c  is a material parameter having the dimensions of dyne/cm, 1, 2 3&c c c are non-

dimensional constants (with 1 2c c  and 1, 2c c ≫ 3c  ) and  21
1 , 1, 2

2k kE k    are the 
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principal Green strain. Once the form of u is specified, the mechanical properties are 
completely determined, being the stress components (averaged across the thickness) along 
the longitudinal and circumferential directions given by differentiation of u. 

   1 1
1 1 2 0 1 1 3 2

2 1 2 1 2

1
, 2 ,Qu u

T c e c E c E
E

  
   

 
   

                                     (9)                                                        
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                                   (10). 

 
The former relations hold in the case of an anisotropic membrane, wherein principal directions 
of strain and stress coincide and express the property that the instantaneous young’s modulus 
increases with the strain, but with a different amount in the two directions. 
 

2. Boundary conditions and lumped parameter models 
The full nonlinear system fluid-structure is modelled by the coupled equations (1), (4), (7) (with 
the replacements (6), (9), (10)) and a numerical method will be used. The analysis of the 
linearized problem in the neighborhood of a stressed configuration will be the object of a 
forthcoming work. The above differential equations have to be solved in a finite domain 
representing an arterial segment. Such a segment is extracted from the arterial tree and 
boundary conditions of physical significance for the variables are required. To this aim, the 
presence of the remaining vascular bed has to be considered. In a pulsatile pressure is assigned 
at the inlet as a forcing, and a simple Windkessel 3-element parameter model for the 
termination is proposed. However, when balance of flows and pressures for the systemic 
circulation have to be taken into account, models for the closed-loop system should be 
addressed. They are built by partitioning the whole vascular tree in elementary districts and by 
“lumping” the dynamical variables in each of them (lumped parameter models).  
These models date back to the pioneeristic works of  

  
Picture 1: The electrical community analogue to a lumped parameter mannequin at six cubicles 
for the human circulatory machine (see Avanzolini et al. [1]) and its coupling with the 1D 
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mannequin at the degree of the descending aorta. Pressure and float variables are exchanged at 
the interface factors to warranty continuity. 
It is also observed by Agrawal, B., Kumar, S., Das, G. (2022), that wall shear stress increases 
as height of stenosis and porous parameter increase whereas it decreases with the increasing 
values of velocity of blood and slope of stenosed artery [18]. Damno, M. M., Agrawal, B., 
Kumar, S., Das, G., (2021). Shows the effects of modeling blood flow through a stenosis and 
an aneurysm using five different blood rheological models is presented in this investigation. 
The flow field and wall shear stress distributions produced by each model are investigated for 
various flow rates and degrees of abnormality. The results show that there are significant 
differences between simulating blood as a Newtonian or non- Newtonian fluid [19]. Mir, A. 
M., & Agrawal, B. D. (2021). Concluded that we can utilize our knowledge of gene regulatory 
apparatus encoded in DNA to produce new microorganisms with unexpected properties [22].  
Westerhof et al. and are primarily based on the analogy between hydraulic networks and 
electrical circuits. In the community proposed by means of Avanzolini et al. [1] for the 
circulatory system, six sections can be diagnosed (fig. 1). In every compartment the values of 
the resistance, compliance and in entrance are regular and a linear relationship between waft 
and stress is given. These basic blocks are linked between them and linked with the coronary 
heart pump to shape a closed loop representing the cardiovascular system. By putting 
conservation of strain and of glide in all nodes of the network, a differential linear system.  
By setting conservation of pressure and of flow in all nodes of the network, a differential linear 
system 

                                                (t) ,
dX

A f t X
dt

   

 
describing the time evolution of the mean values of the variables X = (pi; Qi) in each 
compartment is obtained [1]. To account for a comprehensive system of the global circulation, 
the lumped model (a) and the distributed model (b) presented in the section 2 are coupled. This 
approach allows to implicitly assign boundary conditions for the system (b). Actually these are 
easily expressed as a functions of variables of (a) to guarantee the continuity of flow and 
pressure at the interfaces. Following [3], we have inserted the model (a) in the point of network 
corresponding to the descending aorta (fig. 1). The coupled system is equivalent to a 1D model 
for the full circulatory system where, except for a segment, the remaining arterial tree has been 
truncated and lumped in a finite number of blocks. On the other way around, the coupled model 
can be regarded as a lumped parameter model where a compartment has been expanded in a 
distributed model. The connected subsystems (a) + (b) form a unique closed-loop and no 
boundary condition for the flow variables is required. 
 If the coupling strategy eliminates the drawback of assigning a boundary value for   and   , 
wall displacement conditions at the extrema of the compliant vessel have to be provided. These 
are given by considering a long  (i.e. of length much larger than the reference radius  ) vessel 
with free ends.  
Therefore, the condition 
                              0,R R                1S                                                     (12) 
hold at the ends. Such conditions imply    (null axial strain - see (6)). From (7.2) it follows that 
the implicit relation for R  
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                                             2PR T                                                                          (13) 

 (law of Laplace) is prescribed at the boundaries. Moreover, the boundary conditions on S  

                          (0, t) 0,S                  *,S L t L                                             (14)        

expressing a finite axial deformation are imposed.  
Thus, we solve the differential system (11) and the partial differential system (1), (4), (7), 
together with interface continuity conditions. Details of the coupling algorithm can be found 
in [5]. 
 
3. Numerical results and discussion 
To handle the 1D fluid-structure model numerically, the equations (1),(4),(7) are solved 
simultaneously in a finite interval . Let us consider a sequence of n + 1 equispaced grid points 
(xi) i =0,……n with  and   .The spatial discretization is obtained by evaluating membrane 
strains and stresses (see eqns. (6), (9), (10)) at an inner points   of a staggered grid by 
considering averaged neighboring variables. On the other  
  
hand, wall–fluid equilibrium equations (7) and flow equations (1)- (4) are computed at the 
 n-1 inner points   . 
 
In the following numerical experiments, the spatial mesh has been obtained by dividing the 
length of the vessel L = 8 cm in 800 equal parts (∆x=0.01 cm) and with a time step ∆t =  s. The 
1D model is inserted in correspondence of the descending aortic artery (fig. 1) and is solved 
coupled with the 0D model. The Runge-Kutta scheme of second order has been used in both 
the distributed and the lumped parameter model to advance in time. The choice of the above 
numerical parameters guarantees stability and grid independence. The resulting nonlinear 
system is solved by a globally convergent Newton type method. 
The following numerical values for the distributed model are used: 

          1 0.38c                    2 0.26c                                    3 0.046c    

* 0.8R cm             
* 8L L cm                              

31.05 /d g cm   

In large vessels, as that considered here, the frictional force due to the fluid viscosity is 
comparatively small and wall be neglected (  ).The value of   is 
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Picture 2: Time histories for , , ,u p R S at the center of the artery for three values of the 
elasticity coefficient 

0c  ( 5
0 10 /c dyne cm dotted line . 5

0 2.10 /c dyne cm    

                   continuous line , 6
0 5.10 /c dyne cm            dashed line. 

Varied in the range 5 7
0 10 10 /c dyne cm   (note that 0c  in (8) is obtained by integration 

across the wall thickness of the analogous density energy function in Zhou and Fung ). For a 
lower value of 0c  the vessel wall undergoes large deformation that cannot be adequately 

represented by the present model .For 0c  ≫ 710  the solution approaches to that relative of a 

rigid tube (see below). Actually, the values of  *, pR  and 0c  cannot be chosen independently, 

but should satisfy a compatibility condition, being 0c  approximately equal to pR (mean 

values), in the linear case. The lumped parameters have been taken from [1].  
  Subject to a nice coronary heart pressure, transmitted thru the 0D model, the wall expands 
and oscillates periodically between a most and a minimal limit. Similarly, all 
the waft variables have a periodical behavior. Actually we understand imply price and small 
superposed fluctuations over it. Such values rely on the elasticity coefficient and on the 
unreformed radius *R   .In picture-2 the behavior of the four variables u; p; R; S in the mid-
point are depicted for three different values of the parameter 0c  . A small phase lead of p on 

u is present (see also fig. 4). For larger 0c   the wall becomes stiffer: as expected, both the 

radial and longitudinal deformations decrease with 0c , being the latter comparatively smaller. 

Despite no full-size version in the stress is current (a upward shove of the systolic top of the 
stress is got solely at giant 0c ), a sharp make bigger of the waft speed is reported, 

correspondent to the decreased arterial lumen. Some more oscillations after the systolic height 
might also be present. 

 
    Picture 3: Mean circumferential stretch 2̂   (above) and non-dimensional radial 

amplitude (bottom) Â   (bottom) at the center of the vessel as a function of 0c . Starred 
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points are results from simulations continuous curves are obtained by a cubic 
interpolation. Note the different order of magnitude. 
To measure the influence of 0c  on the radial deformation, let us introduce the mean 

deformation - referred to the central point ( 4x   ) and computed over the last two 
periods – as 

                                         max minˆ
2

R R
R


   

The mean circumferential stretch 2

ˆ
ˆ

*

R

R
   and the non-dimensional radial amplitude 

max
ˆ

ˆ
*

R R
A

R


   Both  2̂  and Â drop (the former of 45%, the latter of 95%) with, 0c in the 

range considered, until an asymptotic value (picture.3). 
The haste of the surge can be attained by fixing two points in the vessel and measuring the 
crossing time of a peak. still, such a procedure isn't accurate over a short length and for 
the time and space way as those considered in this work. also the biographies change their 
shape as they travel, and it's delicate follow a profile time. As a consequence, the 
computed speed value measured for v , p and R between the same grid points may be 
different, and varies in time. For 5

0 2.10 /c dyne cm  an averaged value of the speed for 
v  wave is found of about 
 6-7 m/s. 

 
Picture4: PU loop curve for   in the central point of the vessel. Slopes of such a curve indicates 
the local wave speed. A phase lag between the two variables is present. 
  
 Khir and Parkers suggest another method to measure the wave speed   in elastic tubes in 
absence of reflected waves. It is based on the validity of the water hammer equation   and 
consists in measuring the slope of the PU loop curves. For a typical PU loop as that displayed 
in picture-4, the local wave speed is  in agreement with experiments.     
4. Conclusions 
The dynamics of the flow of blood in the segment of an artery has been studied in relation to 
the elastic and nonlinear properties of the vessel wall. One dimensional model used to describe 
the mechanical fluid wall interaction. The one-dimensional model was expressed by a set of 
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four non-linear partial differential equations. The effects of the elastic parameter son the flow 
and on the wall deformations are shown by numerical experiments. 
In spite of the limitations, the model offers a predictive insight in propagation phenomena and 
can be easily generalized to account for vessel tampering and bending.  
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