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Abstract 
Boosting approaches have recently been developed in the area of software defect prediction 
(SDP) by combining various base classifiers. The use of boosting has sometimes proven to be 
more accurate than using single base classifier in some experiments. Massive research from 
the industry and experts has started working on this area, even though most of the predictive 
methods are still in their infancy and require further research. To determine whether boosting 
models are superior to employing single classification models to produce high-quality 
software, more research is necessary.  A Weighted Adaptive Boosting Ensemble (WABE) 
approach has been proposed for software defect prediction with software quality. The 
misclassification costs are incorporated into the weight-update rule of the boosting method, 
which causes the proposed algorithms to increase the weights of the samples linked to 
misclassified defect-prone modules.  The proposed model showed that a high area under the 
receiver operating curve (ROC-AUC) and the learning ratio of the new model look promising, 
and various performance metrics are compared with other state-of-the-art machine learning-
based methods to prove its superiority. This research confirms that decision tree classifiers 
must be carefully chosen as estimators to accurately identify the defective parts for an effective 
quality product. 
Keywords. Ensemble Learning, Software defect, Software quality, Software Engineering, 
Weighted Adaptive Boosting.  
 
1. Introduction 
The enormous number of applications produced makes software quality a persistent issue that 
produces unfortunate results for business apps [1]. A constant issue throughout the whole 
software life cycle is how to increase software quality and decrease faults. Software defects 
have a massive impact on the quality of the product, as well as increasing expenditures for 
software maintenance. Most of the time, researchers are unable to provide a justification for 
any classification model's prediction, and further research is needed to help designers choose 
an explanation for a machine learning model that predicts a software defect [2]. The fact that 
no specific SDP technique outperforms the other methods on substantially dissimilar datasets 
was discovered, despite some differences in the research. In order to determine which projected 
model is the best for SDP, researchers used additional evaluation metrics [3]. With regard to 
modules from nine NASA programmes, we developed prediction models that took into account 
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various combinations of McCabe and Halstead traits (see Table 3). Researchers used twelve 
NASA datasets to compare the performances of several machine learning algorithms with 
respect to the metrics of accuracy, F-score, Precision, Recall, MCC, and ROC. In order to limit 
testing to the modules that are most likely to have defects, the technique of SDP can be utilized 
as a quality assurance activity to identify those modules. This method enables the development 
of more expensive but higher-quality software [4,5]. In order to address the problem of class 
imbalance, two classifiers—the asymmetric kernel partial least squares classifier (AKPLSC) 
and the asymmetric kernel principal component analysis classifier (AKPCAC)—are proposed 
in this study. Class imbalance may significantly reduce the performance of defect prediction. 
[6], The classification percentage Due to the size of these data sets and the software's 
sensitivity, using a hybrid technique that combines PCA, RF, NB, and SVM to provide the 
accurate predictions is essential for early detection [7]. The chief drawback of these statistical 
approaches was that they are established on the basis of the existent samples or patterns in the 
metrics of software and hence became unreliable for changing these patterns. To address these 
drawbacks, since, from the last few decades, ML (Machine Learning) approaches were already 
developed and being developed day-by-day. Existent approaches were passive in expressing 
the reliable outcomes of the software and it requires physical perpetuation support for adapting 
the emerged data sets in software industries. ML has the capability of cracking the conflict of 
physical perpetuation however there is a need for alterations in what manner the software 
companies of software industries are employed with SDPs. 

Day-by-day ML algorithms are being used for SDP. Benchmark algorithms such as 
Bagging, Support Vector Machines (SVM), Navie Bayes (NB), Artificial Neural Networks 
(ANN) and Decision Trees (DT) have been already employed to resolve this SDP problem  
[8,9] effectively with better accuracy. DTs (Decision Trees) have the capability of finding out 
the faults of software. The main advantage with DTs is that they were reliable to noisy 
environmental data and the omitted values can be indulged. However, there is a limitation that 
they were exposed to over-fitting. Another standard ML algorithm was SVM. They have also 
been used for solving SDP problems. The benefit with SVMs is that they are memory effective 
and they can accept KFs (Kernal Functions) as DFs (Decision Functions). However, this SVM 
was limited to produce reduced performance under the condition if the features to be considered 
were higher than the samples taken. BNNs (Bayesian Belief Networks) were also used to 
resolve SDP. The main advantage of BBN is that it can produce probabilistic predictions and 
training data is needed to produce these preceding probabilities. However, BBN's have the 
limitation that expertise of domain for generating the network is desirable and they are 
computationally exclusive. ANNs (Artificial Neural Networks) have the capability for 
predicting the SDs. The key benefits of ANNs are that they have the capacity to learn non-
linear as well as composite functions. They can also be reliable to faults in training data. 
However, there are some limitations that the training process is very slow, confluent and they 
are prone to over-fitting. Considering this into account, in this study, we propose a Adaboost 
defect prediction model as a classifier that is trained to recognise software modules that are 
subject to defects. Constructing a defect dataset, implementing a prediction approach or a 
machine learning classifier to the defect dataset, and evaluating the performance of defect 
prediction models constitute defect prediction modeling. 
 



AN EMPIRICAL INVESTIGATION OF PRIMARY DATA ON THE SAVINGS AND INVESTMENT BEHAVIOR 
OF INDIAN HOUSEHOLDS 

Journal of Data Acquisition and Processing Vol. 38 (1) 2023      977 
 

The remaining of this paper organized as follows. In section 2 summarizes the literature 
review with the discussion on the early developed methods for SDP. Next we present and 
discuss the proposed model in section 3 with the complete working of procedure. Then section 
4 presents the experimental set up along with the discussion on the obtained results. Finally 
section 5 concludes the research with future scope.  
2. Review of The Literature 
Several methods were anticipated for cracking the conflict of SDP. The mainly identified 
methodologies were ML approaches. ML approaches were employed expansively with 
commended achievement in SDP for finding out the vulnerable elements on the basis of 
chronological errors as well as necessary factors. Many studies have been already employed 
for predicting the software defects which evident the significance of ML techniques for SDP 
complications. The study in [10] proposed a novel way of approach for solving the SDP 
problem using SPCFNN. PD, as well as PF, were considered as evaluation measures. A 
comparison has been made with the benchmark methods such as LSTM, DSNN, DBN, RNN, 
etc. Higher performance was found over the compared ones to overcome the conflict of SDP. 
A modern method has developed for SDP and named the method as PMOFES [11]. Complexity 
and count rates were examined as performance metrics and a comparison was made with 
standard techniques such as NB, LR, k-NN. Based on the proposed experimentations, the 
authors have claimed that PMOFES yields better accuracy for resolving SDP. To overcome JT 
(Just-in-Time) SDP problem, to identify more defective software updates with less code 
inspection by using improved supervising models CBS+(classify before sorting) [12]. The 
effectiveness of CBS+ utilizing three distinct assessment settings, including time-wise cross-
validation, 10-times 10-fold cross-validation, and cross-project validation. CBS+ detects 15% 
to 26% more incorrect modifications while retaining a similar amount of context switching and 
early false alarms. The authors proved that supervised techniques have the significance to 
overcome JT-SDP. In order to resolve the severe problem of SDP, systematic structure and 
semantic data is more significant to a program, in [13] proposed DP-ARNN takes vector input 
from ASTs for mapping and embedding than clearly finds the syntax and semantic features. 
According to the experimental findings, DP-ARNN, on average, outperforms state-of-the-art 
approaches in terms of F1-measure improvement and AUC improvement. Class imbalance 
problem would yield non-diverse synthetic instances, as well as numerous unneeded noise 
instances; to overcome this, [14] has developed the KMFOS model, which would distribute a 
new faulty instance in the space of a defective dataset. In addition, compared to other state-of-
the-art class-imbalance approaches, such as balance bagging classifier, RUS boost classifier, 
Instance Hardness Threshold, and cost-sensitive methods, our method is more accurate and 
efficient. In comparison to other sampling and class-imbalance approaches and for SDP, 
KMFOS effectively produces superior Recall and bal values, which enhances the effectiveness 
of prediction models. Class imbalance problem and parameter selection are Typical problems 
of SDP; nevertheless, [15] has created a synchronous solution of hybrid multi-objective cuckoo 
search under-sampled software defect prediction model based on SVM (HMOCS-US-SVM). 
False positive rate (pf), probability of detection (pd), and G-mean are utilized to assess the 
efficacy of the proposed method (HMOCS), which is employed to simultaneously choose non-
defective samples and improve the SVM's parameters. The suggested strategy is effective in 
resolving the problem of software defect prediction when compared to the output of eight 
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prediction models. In general, the   approaches perform better when compared to the standard 
benchmark SDP models. The authors [16] proposed a novel SDP model called SDAEsTSE for 
addressing the class imbalance problem, and they showed how to extract the DPs from 
conventional software metrics using learning phase and two-stage   (TSE) phase. They also 
showed the efficacy of DPs, TSE, and SDAEsTSE, and they obtained the highest score. 
According to F-measure, AUC, and MCC, her performance is assessed. Typically, the 
conventional classifiers' performance has a ceiling of around 80% recall. The performance of 
RF, NB, RPart, and SVM classifiers on various datasets is compared individually by the authors 
[17] who also predict and analyse the level of prediction uncertainty and carry out a sensitivity 
analysis. To sum up, not all competitors performed equally on predictions. They come to the 
conclusion from research that classifiers without majority voting-based decision-making are 
likely to perform at their highest level when predicting defects. Researchers have started to test 
semi-supervised approaches to identify software faults in order to address the existing 
challenges. As compared to supervised learning, semi-supervised learning may fully exploit 
unlabeled examples to predict defects and result in higher classification results with few 
labelled samples [18]. Furthermore, 80% of software testing problems are discovered in 20% 
of the code, indicating that the majority of software defects are focused in a small number of 
software modules. As a result, there is a substantial "class imbalance"[19] in software defect 
history data, which makes it difficult to learn from and makes it difficult to estimate results. 
All of these researches are aimed at demonstrating the AdaBoost algorithm's effectiveness, 
particularly in binary classification issues. We also aim to present the success of the suggested 
model versus best known and recent state-of-the-art methods after modifying and repeating 
experiments on a real dataset, namely the Software Defect prediction problem (SDP). 
Moreover, Table 1 shows the several ML methodologies utilized for cracking out the SDP 
complications.  
 
Table 1 Other ML methods for decoding SDP problems 

S.No Method 
used  

Data Set 
Used 

Problem 
Name 

Compared 
method 

Performance 
Metrics used 
for the study 

Ref. 

1 KPWE PROMISE & 
NASA  

SDP ELM, BP, SVM AUC 
F-Measure 

[20] 

2 - PROMISE SD 
Estimation 

MLP, RBF, 
SVM, Bagging, 
RF, NB, 
Multinomial 
NB 

Accuracy 
Precision 
Recall 
F-Measure 

[21] 

3 SVM,  
k-NN, 
RF, LiR 

NASA, ANT SDP - Accuracy, 
AUC, RMSE, 
RR 

[22] 

4 L-RNN NASA  SFP NB, ANN, LR, 
k-NN, C4.5 

 AUC, ROC, 
TP,TN, FP, FN 

[23] 
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5 SSA-
BPNN 

KC1,JM1, 
PC3, PC4  

SFP k-NN, SVM, 
NB, LDA 

AUC, 
Confusion 
Matrix, 
Sensitivity, 
Specificity, 
Accuracy 

[24] 

6 ConFS, 
CFS 

PROMISE, 
NASA, 
AEEEM 

SDP  LR, RF, NB, 
J48, LMT, SC, 
KM, PAM, 
FCM, NG 

 FA, RBM, AE, 
AUC, IQR,  

[25] 

7 GTB JM1 SDP DT, KNN, 
LDA, LR, 
MLP,NB, 
QDA, RF, SGD 

 F1,ROC,AUC, 
TPR, FPR 

[26] 

8 DPDF JM1, MC1, 
etc., 

SDP NB,LR, 
SVM,RF 

gc-Forest, AUC 
Z- score  

[27] 

9 Random 
Forest, 
XGB 

ivy, camel, 
jedit-4.1 

CPDP - PCA, CPDP 
,WPDP 
Class imbalance 

[28] 

10 Voting   New xalan-
2.5 
New xalan-
2.6  

SDP DT,RF,AdB, 
GB,NB,KNN, 
ANN 

Precision, 
Recall 
 F1-score 

[29] 

 
3. Methodology 
This work aims to show the performance analysis of various machine learning techniques 
including proposed model for SDP on JM1 dataset considered from PROMISE repository [30]. 
The dataset has 10885 instances and 22 no. of attributes. It does not have any missing attributes. 
Table 2 represents more details about the dataset with all attribute name and information. The 
proposed WABE method consists of two phases: i) Designing of weighted AdaBoost model to 
learn from past software defect profile data ii) Prediction of software defect by using trained 
WABE   model.  
Table 2.  JM1 dataset details 
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Sl No Attribute  Details  Attribute type 

1 loc McCabe’s line count of code Numeric 
2 v(g) McCabe “cyclomatic complexity” Numeric 
3 ev(g) McCabe “essential complexity” Numeric 
4 iv(g) McCabe “design complexity” Numeric 
5 n Halstead total operators + 

operands 
Numeric 

6 v Halstead “volume” any (default) 
7 l Halstead “program length” Numeric 
8 d Halstead “difficulty” any (default) 
9 i Halstead “intelligence” any (default) 
10 e Halstead “effort” any (default) 
11 b Halstead Numeric 
12 t Halstead’s time estimator any (default) 
13 lOCode Halstead’s line count Numeric 
14 lOComment Halstead’s count of lines of 

comments 
Numeric 

15 lOBlank Halstead’s count of blank lines Numeric 
16 lOCodeAndC

omment 
comments Numeric 

17 uniq_Op unique operators Numeric 
18 uniq_Opnd unique operands Numeric 
19 total_Op total operators Numeric 
20 total_Opnd  total operands Numeric 
21 defects reported defects boolean (default) 

 
 In this work, AdaBoost [31] has been used to boost the performance of decision trees 
for binary classification problems, i.e. software defect or not. Adaboost initially generates and 
allocates training and test subsets at random (Here the proposed   model predicts the software 
defect from 𝑁 no. of decision trees constructed from weighted instances (software profile) in 
training data). It iteratively trains the model by picking the training set and gives higher weights 
to incorrectly classify observations, so that they will get a better probability of classification in 
the next iteration. Based on the decision tree classifier the algorithm assigns the weights to the 
classifier for each iteration. This entire procedure is repeated until there is no more 
improvement in prediction error or the appropriate number of estimators is formed. The 
prediction of software defects has been accomplished by calculating the weighted average of 
the forecast of the generated pool of decision trees. Figure 1 depicts a sample depiction of the 
proposed methods. As stated previously, the proposed algorithm utilizes the boosting strategy, 
and it is evident that a high learning rate is more probable. Gini, entropy, or both are utilised 
by a number of decision tree techniques. The Gini index and entropy are the measures that are 
used to determine how much information has been gained. Methods for decision trees employ 
this value to separate nodes. These two metrics represent the degree of noise and impurity at a 
node. A node with many classes, for instance, suggests impurity, whereas a node with only one 
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class exhibits purity. Furthermore, a decision tree is a graph-based solution to a problem that 
represents all feasible trial-by-decision solutions based on the provided conditions. 

 
Figure 1 Overview of the proposed WABE   method. 

In this proposed approach weights are updated with support of decision tree classifier 
followed by best split and employed as the estimator. Gini Index method is more popular and 
powerful in binary classification problems with short a period of time for execution and it’s 
computationally very efficient in the state-of-the-art of machine learning methods. Here the 
"Gini purity" method was implemented by this classifier used calculate the purity of split 
calculated by following equation. 

𝐺𝑖𝑛𝑖 = 1 −  ෍ 𝑃ଶ(𝑐௜)

௡

௜ୀଵ

 

The probability of class 𝑐௜ in that node is given by 𝑃ଶ(𝑐௜). Because the Gini index indicates 
that the characteristics are split in two, we may compute a weighted sum of the impurity for 
each partition individually. The classifier of weighted adaboost model is given below.  

𝐶𝑙𝑠௜ = 𝐴𝑑𝑎𝐵𝑜𝑜𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝐷𝑇𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 =ᇱ 𝑔𝑖𝑛𝑖ᇱ, 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ

= 5), 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 = 1.0) 
In the above function, there is a split strategy called "best." It is the default value. Another 
critical parameter is the "maximum depth of the tree." A larger maximum depth value results 
in overfitting, whereas a smaller one results in underfitting. As noted in the model specification, 
this value is set to "5".  Another parameter used in this model is learning rate which is denoted 
as  𝓵, which is indicated by and represents the model's speed of learning. A weight of adaboost 
is set to 0.1 ≤ 𝓵 ≤ 1.0  in this study because this range was shown to be more appropriate 
during the tests. Another factor influencing accuracy is the number of estimators. The number 
of estimators has to increase the WABME and find the accuracy, the default value is 50, which 
indicates when boosting should be stopped. For weighted adaboost, the default value is used. 

Data set 

Distribution 1 
  𝑊ଵ

௧ =  
ଵ

௡
  

Data Subset 1  Data Subset 1  Data Subset 1  

Initialize the weights  

Distribution 2 
  𝑊ଶ

௧ =  
ଵ

௡
  

Distribution T 
  𝑊௡

௧ =  
ଵ

௡
  

Gini, 𝓵, Gini, 𝓵, Gini, 𝓵, 

Output 1 Output 2 Output T 

Output 

D
T 
C 

D
T 
C 

D
T 
C 
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Algorithm 1 presents the working schema of the proposed model and its step-by-step execution.  

Algorithm 1: Pseudo code of Weighted AdaBoost classifier 

Input:  
Let 𝑋 = {𝑋ଵ, 𝑋ଶ, 𝑋ଷ, … , 𝑋௡} be dataset of software defect profiles,  

Where, Training Dataset 𝑋௜ = ൛𝑋௜,ଵ, 𝑋௜,ଶ, 𝑋௜,ଷ, … , 𝑋௜,௠, 𝑠𝑡௜ൟ, 𝑋௜ ∈ 𝑋, 𝑠𝑡௜  ∈

{ᇱ𝐷𝐸𝐹𝐸𝐶𝑇ᇱ, ′𝑁𝑜𝑟𝑚𝑎𝑙′}, represents 𝑖௧௛software profile.  
Here 𝑠𝑡௜ denotes software type, which can be either ′𝑫𝑬𝑭𝑬𝑪𝑻ᇱ or ′𝑵𝒐𝒓𝒎𝒂𝒍′.  
Learning rate  𝓵 
Learning turns 𝜯 times  
Begin: 

1. Initialize the weights of each 𝑋௜ ∈ 𝑋  : 𝑊௜
௧ =  

ଵ

௡
     

2. for 𝑡 ← 0 𝑡𝑜 𝑇 do 

3.  Add decision tree sequentially 𝐷𝑇௜(𝑋) by using splitting along   
                features by using information gain computation. 
 Find out the prediction of software defect from trained model   

            𝐷𝑇௜(𝑋) ∶ 𝑠𝑡 = 𝐷𝑇௜(Χ)                                                                                                                             
 Select the model with least weighted prediction error:  

       𝑒௧ = 𝐸𝑟𝑟𝑜𝑟 〈𝑊௧  ቂ1௦௧೔
ᇲ ஷ ௦௧೔

ቃ
௜ୀଵ

௡
〉 

                        
 Compute the weight of 𝑡௧௛  model: 

 
                               

𝛿௧ =  
ଵ

ଶ
 × ln 〈

ଵି ௘೟

௘೟
〉

                                                   
              Obtain DT Classifier (w.r.t gini, learning rate, other parameters)  

                                                             
 

 Update the weight of each software defect profile 𝑋௜ 

           𝑊
௑೔

ᇲ
௜ାଵ =  

ௐ೟ ൫௑೔,భ,௑೔,మ,௑೔,య,…,௑೔,೘,௦௧೔൯௘(ష ഃ೟ ×  ೞ೟೔ × ವ೅೟(౔౟))

ఏ
,        

      // In the Boosting approach, update the distribution using the    
         DT classifier. 

       Here is the normalization factor such that ෌ 𝑊୧
୲௡

௜ୀଵ
= 1 . 

   If ( 𝑒௧ −  𝑒௧ାଵ  <  𝜆 , here is the 𝜆 threshold) then Break 
   Else Continue 
4. Return the final prediction: 

                                            𝛹஺ௗ௔஻௢௦௧(𝑋) = σ ൫∑ 𝛿௧𝐷𝑇௜(𝑋)்
௜ୀଵ ൯

                          

5. Test the dataset due to  
𝛹஺ௗ௔஻௢௦௧ (𝑋)

 

6. end for     

The average of the generated model outputs is used as the final forecast in test cases. If 

the prediction is positive than DP= 1, otherwise NDP = 0 is the expected class label 

7. END 



AN EMPIRICAL INVESTIGATION OF PRIMARY DATA ON THE SAVINGS AND INVESTMENT BEHAVIOR 
OF INDIAN HOUSEHOLDS 

Journal of Data Acquisition and Processing Vol. 38 (1) 2023      983 
 

                                                  
 

Generate the output  
                                   Solution to the test dataset and the success rate 

4. Result and Discussion 
In this section, the experimental design and result analysis are broken down in great depth 
before being presented and discussed.  
4.1. Configuration of the Simulation Environment, System, and Parameters 
The suggested approach has been implemented on a machine with Intel(R) Core(TM) i7-6700 
processor at 3.40 GHz, 4.00 GB RAM, and Windows 10 64-bit operating system specifications. 
The simulation environment is comprised of Python Anaconda and Spyder IDE. The 
parameters of the classifiers (Table 3) are set by picking appropriate values through trial and 
error.   
Table 3: Variable Configuration 

Classifiers Parameter Setup 

RandomForestClassifier n_estimators : 100; Random state : 3  
KNeighborsClassifier n_neighbors : 3 
LDA Classifier random_state = 1 
GaussianNB Priors: ’None’ 
SGDClassifier loss= ’modified_huber’; shuffle = True; random_state = 101 
LogisticRegression random_state = 9  
DecisionTreeClassifier 
MLP Classifier 
QDA Classifier 

random_state = 108 
random_state = 1 
random_state = 1 

Proposed   Model Training and Testing Spit: 70% - 30% 

 

4.2. Statistical Competitiveness of Models 
In this research work, we will compare the prediction performance of individual classifiers in 
a relatively recent and notable study in the literature. Then we compare all of the methods 
described in [26] from which we import SGD, RF, NB, LR, KNN, DT, LDA, MLP, and QDA 
are the nine well-known algorithms discussed for performance evolution with the proposed tree 
based   model [32,33]. As a result, the same methods are employed and compared here together 
with the same dataset. Various performance metrics such as accuracy, TP, FP, TN, FN, TPR, 
FPR, precision, TNR, F1 score, and ROC-AUC has been computed. The prediction 
performance of RF and DT was comparable to that of separate classifiers, with only slight 
variations in accuracy and AUC ratings. The parameters are then adjusted, and a new approach 
WABE   is developed, then we compare all of the methods described in Table 4 and show the 
effectiveness of the proposed method with a difference (3.3%) in accuracy tree based methods. 

The proposed weighted   model for software defect prediction has been analyzed and 
compared with respect to variations in error rate with no. of estimators. Confusion matrix has 
been generated from the prediction of the proposed model for both version, i.e. real and 
discrete, and presented in Figure 2.a and 2.b respectively.  



AN EMPIRICAL INVESTIGATION OF PRIMARY DATA ON THE SAVINGS AND INVESTMENT BEHAVIOR 
OF INDIAN HOUSEHOLDS 

Journal of Data Acquisition and Processing Vol. 38 (1) 2023      984 
 

 
Table 4. Comparison of Performance Metrics of all the models & proposed model 

Models Performance Metrics 
Accuracy TP FP TN FN TPR FPR Precision TNR F1 ROC-

AUC 
SGD 80.18 97 148 8631 2009 0.0460 0.0168 0.3959 0.98 0.0825 0.51 
RF 92.30 1406 138 8641 700 0.6676 0.0157 0.9106 0.98 0.7704 0.82 
NB 80.47 352 371 8408 1754 0.1671 0.0422 0.4868 0.95 0.2488 0.56 
LR 80.89 181 155 8624 1925 0.0859 0.0176 0.5386 0.98 0.1482 0.53 
KNN 83.09 843 577 8202 1263 0.4002 0.0657 0.5936 0.93 0.4781 0.66 
DT 91.77 1631 430 8349 475 0.7744 0.0489 0.7913 0.95 0.7828 0.86 
LDA 81.25 266 200 8579 1840 0.1263 0.0227 0.5708 0.97 0.2068 0.55 
MLP 55.85 55 33 8746 2051 0.0261 0.0037 0.625 0.99 0.0501 0.51 
QDA 80.04 419 485 8294 1687 0.1989 0.0552 0.4634 0.94 0.2784 0.57 
Proposed 
WABE 

93.51 1571 174 8605 535 0.7459 0.0198 0.9002 0.98 0.8158 0.86 

 
 

We may compute a weighted sum of the impurity for each partition individually of the 
proposed   approach updated the gini index Pଶ(c୧)  and maxdepth of the tree is 5, and find the 
accuracy of the proposed method is 93.51 with highest F1 score and ROC-AUC, which shows 
that the proposed model is capable to handle the imbalance class problem of software defect 
prediction data as compared to other models. The ROC curve of all the simulated models is 
shown in Figure 3. In a close ROC analysis, it is noticed that micro-average ROC and macro-
average ROC covers the area of 0.97 and 0.94 respectively. Further, the both of ROC of class 
0 (normal) and ROC of class 1 (defective) covered the area of 0.94, which is found better as 
compared to other models.  

Figure 2. Confusion Matrix of a) WABE Real Classifier, b) WABE Discrete Classifier 
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   (a)                                                       (b)                                              (c) 

   (d)                                                    (e)                                                    (f) 

       (g)                                                          (h)                                                            

                                                                    (j)                                   

Figure 3. ROC Curve Analysis of a) DT, b) KNN, c) LDA, d) LR, e) MLP, f) NB, g) QDA, 
h) RF  i) SGD  and  j) Proposed WABE 
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After update the weights of adaboost the classification report suggests that our proposed model 
resulted into less error rate (Training and Testing error) as shown in Figure 4 and 5 
comparisons to all models in state-of-art. In our model we used decision tree classifier as an 
estimator by changing their weights than calculate error of real and discrete WABE model 
results shown in Table 5.  
Table 5. Training and testing error of real and discrete WABE methods 

Models Performance Metrics 
WABE 
Real 

Train Error 0.1710 0.0070 
Test Error  0.1861 0.0016 

WABE 
Discrete 

Train Error  0.1866 0.0015 

Test Error  0.1842 0.0018 

 
 

 
The dataset "Learning Curve" and "number of estimators" are shown in Figure 6 and 

7, respectively, if the recommended methodology is to be seen. The training data set score and 
prediction accuracy are combined to represent the learning curve of a Decision Tree classifier 
in Figure 6. This graph demonstrates how accuracy and learning rates may be displayed 
simultaneously. These two figures, Figure 6 and 7, and the decision tree were used as an 
estimator to split the entire dataset using the best-Split function. Following the division of the 
data into training and test sets, which in this study are 75% and 25% respectively, the outcomes 
are automatically assessed and the findings are generated. WABE   parameter learning rates 
are declared to be 0.1 and 1.0, respectively, and success rates are provided in the paper. It is 
reported that after changing gini and max depth these two values as specified, WABE had a 
fast convergence speed, implying that it gets extremely close to the final result relatively soon. 
It is also reported that WABME had a higher success rate in learning due to the other algorithms 
listed. Further, the learning rate determines how much each model contributes to the   
prediction. Smaller rates may necessitate more decision trees in the  , whereas bigger rates may 
have fewer trees in the. It is usual to investigate learning rate values on a log scale, such as 
between 0.1 and 1.0.  

Figure 4. Comparison of Training and Testing 
error of all the models with discrete WABE 
model 

Figure 5. Comparison of Training and Testing 
error of all the models with real WABE model 
model 
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 In our study Figure 6 shows the WABE   model mean accuracy for each learning rate is 
reported. Here, we find that higher learning rates lead to greater performance on training data. 
More trees in the   with slower learning rates could improve performance even further.  

 
For better prediction accuracy during the modeling stage, ML methods that use  s are 

well-known. They play an important function since they are adaptable and can be used by a 
variety of estimators. These   estimators are ideal for regression and classification issues 
because they can reduce bias and variance while also improving model performance. The effect 
of the selection of no. of estimators in WABE   model on the software defect prediction 
accuracy has been presented in Figure 7 respectively. From the first round onwards the no. of 
estimator’s range has to increase the outcome of WABE   model performs well.  

 
5. Conclusion 
In this paper, a Decision Tree estimator-based weighted adaptive boost algorithm has been 
proposed for effectively predicts the defects. After performing trials, a classifier is tuned by 
updating their weights, and the binary classification problem is resolved. With an efficient 
identification of weak classifiers and updated their weights, the proposed method is able to 
predict the software defects with a high degree of precision. It claims to predict and perform in 
short periods of time, apart from its competition. The accuracy of the proposed model is 93.51% 
and is higher than other compared models. As a conclusion, WABE has the greatest accuracy 
for predicting output classes. WABE can be updated in the future to get better results with 
multi-class classifications. As future work, the proposed method can be used to predict the 
defects of some new datasets from various programming language based(C/ C++/JAVA) open-
source projects. The proposed method can be simulated for the defect prediction at code and 
function change levels. Also, with the generation of automatic features from the dataset, some 
deep learning models like RNN may be used for defect prediction. Moreover, predicting the 
type of defect such as security threats, safety-critical factors, planning failure, etc. will be a 
challenging future area with the proposed approach. 
 
 
 

Figure 6 Learning rate versus accuracy for           
               WABE   model 

Figure 7 No of estimators versus accuracy for 
WABE   Model  
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