

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 975

ISSN: 1004-9037
https://sjcjycl.cn/

DOI: 10.5281/zenodo.7699787

WABE: A MODIFIED VERSION OF ADA-BOOSTING APPROACH TO IMPROVE
SOFTWARE QUALITY AND FOR EFFECTIVE SOFTWARE DEFECT

PREDICTION

K. Eswar Rao 1*, P. Ramkishor 2, P. Annan Naidu 3, S. Jayawardhana Rao 4 and T. Ravi
Kumar 5

1, 2, 3 ,4 ,5Department of Computer Science and Engineering, Aditya Institute of Technology
and Management, Tekkali-532201, India.

* Corresponding Author: eswarkoppala@gmail.com

Abstract
Boosting approaches have recently been developed in the area of software defect prediction
(SDP) by combining various base classifiers. The use of boosting has sometimes proven to be
more accurate than using single base classifier in some experiments. Massive research from
the industry and experts has started working on this area, even though most of the predictive
methods are still in their infancy and require further research. To determine whether boosting
models are superior to employing single classification models to produce high-quality
software, more research is necessary. A Weighted Adaptive Boosting Ensemble (WABE)
approach has been proposed for software defect prediction with software quality. The
misclassification costs are incorporated into the weight-update rule of the boosting method,
which causes the proposed algorithms to increase the weights of the samples linked to
misclassified defect-prone modules. The proposed model showed that a high area under the
receiver operating curve (ROC-AUC) and the learning ratio of the new model look promising,
and various performance metrics are compared with other state-of-the-art machine learning-
based methods to prove its superiority. This research confirms that decision tree classifiers
must be carefully chosen as estimators to accurately identify the defective parts for an effective
quality product.
Keywords. Ensemble Learning, Software defect, Software quality, Software Engineering,
Weighted Adaptive Boosting.

1. Introduction
The enormous number of applications produced makes software quality a persistent issue that
produces unfortunate results for business apps [1]. A constant issue throughout the whole
software life cycle is how to increase software quality and decrease faults. Software defects
have a massive impact on the quality of the product, as well as increasing expenditures for
software maintenance. Most of the time, researchers are unable to provide a justification for
any classification model's prediction, and further research is needed to help designers choose
an explanation for a machine learning model that predicts a software defect [2]. The fact that
no specific SDP technique outperforms the other methods on substantially dissimilar datasets
was discovered, despite some differences in the research. In order to determine which projected
model is the best for SDP, researchers used additional evaluation metrics [3]. With regard to
modules from nine NASA programmes, we developed prediction models that took into account

AN EMPIRICAL INVESTIGATION OF PRIMARY DATA ON THE SAVINGS AND INVESTMENT BEHAVIOR
OF INDIAN HOUSEHOLDS

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 976

various combinations of McCabe and Halstead traits (see Table 3). Researchers used twelve
NASA datasets to compare the performances of several machine learning algorithms with
respect to the metrics of accuracy, F-score, Precision, Recall, MCC, and ROC. In order to limit
testing to the modules that are most likely to have defects, the technique of SDP can be utilized
as a quality assurance activity to identify those modules. This method enables the development
of more expensive but higher-quality software [4,5]. In order to address the problem of class
imbalance, two classifiers—the asymmetric kernel partial least squares classifier (AKPLSC)
and the asymmetric kernel principal component analysis classifier (AKPCAC)—are proposed
in this study. Class imbalance may significantly reduce the performance of defect prediction.
[6], The classification percentage Due to the size of these data sets and the software's
sensitivity, using a hybrid technique that combines PCA, RF, NB, and SVM to provide the
accurate predictions is essential for early detection [7]. The chief drawback of these statistical
approaches was that they are established on the basis of the existent samples or patterns in the
metrics of software and hence became unreliable for changing these patterns. To address these
drawbacks, since, from the last few decades, ML (Machine Learning) approaches were already
developed and being developed day-by-day. Existent approaches were passive in expressing
the reliable outcomes of the software and it requires physical perpetuation support for adapting
the emerged data sets in software industries. ML has the capability of cracking the conflict of
physical perpetuation however there is a need for alterations in what manner the software
companies of software industries are employed with SDPs.

Day-by-day ML algorithms are being used for SDP. Benchmark algorithms such as
Bagging, Support Vector Machines (SVM), Navie Bayes (NB), Artificial Neural Networks
(ANN) and Decision Trees (DT) have been already employed to resolve this SDP problem
[8,9] effectively with better accuracy. DTs (Decision Trees) have the capability of finding out
the faults of software. The main advantage with DTs is that they were reliable to noisy
environmental data and the omitted values can be indulged. However, there is a limitation that
they were exposed to over-fitting. Another standard ML algorithm was SVM. They have also
been used for solving SDP problems. The benefit with SVMs is that they are memory effective
and they can accept KFs (Kernal Functions) as DFs (Decision Functions). However, this SVM
was limited to produce reduced performance under the condition if the features to be considered
were higher than the samples taken. BNNs (Bayesian Belief Networks) were also used to
resolve SDP. The main advantage of BBN is that it can produce probabilistic predictions and
training data is needed to produce these preceding probabilities. However, BBN's have the
limitation that expertise of domain for generating the network is desirable and they are
computationally exclusive. ANNs (Artificial Neural Networks) have the capability for
predicting the SDs. The key benefits of ANNs are that they have the capacity to learn non-
linear as well as composite functions. They can also be reliable to faults in training data.
However, there are some limitations that the training process is very slow, confluent and they
are prone to over-fitting. Considering this into account, in this study, we propose a Adaboost
defect prediction model as a classifier that is trained to recognise software modules that are
subject to defects. Constructing a defect dataset, implementing a prediction approach or a
machine learning classifier to the defect dataset, and evaluating the performance of defect
prediction models constitute defect prediction modeling.

AN EMPIRICAL INVESTIGATION OF PRIMARY DATA ON THE SAVINGS AND INVESTMENT BEHAVIOR
OF INDIAN HOUSEHOLDS

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 977

The remaining of this paper organized as follows. In section 2 summarizes the literature
review with the discussion on the early developed methods for SDP. Next we present and
discuss the proposed model in section 3 with the complete working of procedure. Then section
4 presents the experimental set up along with the discussion on the obtained results. Finally
section 5 concludes the research with future scope.
2. Review of The Literature
Several methods were anticipated for cracking the conflict of SDP. The mainly identified
methodologies were ML approaches. ML approaches were employed expansively with
commended achievement in SDP for finding out the vulnerable elements on the basis of
chronological errors as well as necessary factors. Many studies have been already employed
for predicting the software defects which evident the significance of ML techniques for SDP
complications. The study in [10] proposed a novel way of approach for solving the SDP
problem using SPCFNN. PD, as well as PF, were considered as evaluation measures. A
comparison has been made with the benchmark methods such as LSTM, DSNN, DBN, RNN,
etc. Higher performance was found over the compared ones to overcome the conflict of SDP.
A modern method has developed for SDP and named the method as PMOFES [11]. Complexity
and count rates were examined as performance metrics and a comparison was made with
standard techniques such as NB, LR, k-NN. Based on the proposed experimentations, the
authors have claimed that PMOFES yields better accuracy for resolving SDP. To overcome JT
(Just-in-Time) SDP problem, to identify more defective software updates with less code
inspection by using improved supervising models CBS+(classify before sorting) [12]. The
effectiveness of CBS+ utilizing three distinct assessment settings, including time-wise cross-
validation, 10-times 10-fold cross-validation, and cross-project validation. CBS+ detects 15%
to 26% more incorrect modifications while retaining a similar amount of context switching and
early false alarms. The authors proved that supervised techniques have the significance to
overcome JT-SDP. In order to resolve the severe problem of SDP, systematic structure and
semantic data is more significant to a program, in [13] proposed DP-ARNN takes vector input
from ASTs for mapping and embedding than clearly finds the syntax and semantic features.
According to the experimental findings, DP-ARNN, on average, outperforms state-of-the-art
approaches in terms of F1-measure improvement and AUC improvement. Class imbalance
problem would yield non-diverse synthetic instances, as well as numerous unneeded noise
instances; to overcome this, [14] has developed the KMFOS model, which would distribute a
new faulty instance in the space of a defective dataset. In addition, compared to other state-of-
the-art class-imbalance approaches, such as balance bagging classifier, RUS boost classifier,
Instance Hardness Threshold, and cost-sensitive methods, our method is more accurate and
efficient. In comparison to other sampling and class-imbalance approaches and for SDP,
KMFOS effectively produces superior Recall and bal values, which enhances the effectiveness
of prediction models. Class imbalance problem and parameter selection are Typical problems
of SDP; nevertheless, [15] has created a synchronous solution of hybrid multi-objective cuckoo
search under-sampled software defect prediction model based on SVM (HMOCS-US-SVM).
False positive rate (pf), probability of detection (pd), and G-mean are utilized to assess the
efficacy of the proposed method (HMOCS), which is employed to simultaneously choose non-
defective samples and improve the SVM's parameters. The suggested strategy is effective in
resolving the problem of software defect prediction when compared to the output of eight

AN EMPIRICAL INVESTIGATION OF PRIMARY DATA ON THE SAVINGS AND INVESTMENT BEHAVIOR
OF INDIAN HOUSEHOLDS

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 978

prediction models. In general, the approaches perform better when compared to the standard
benchmark SDP models. The authors [16] proposed a novel SDP model called SDAEsTSE for
addressing the class imbalance problem, and they showed how to extract the DPs from
conventional software metrics using learning phase and two-stage (TSE) phase. They also
showed the efficacy of DPs, TSE, and SDAEsTSE, and they obtained the highest score.
According to F-measure, AUC, and MCC, her performance is assessed. Typically, the
conventional classifiers' performance has a ceiling of around 80% recall. The performance of
RF, NB, RPart, and SVM classifiers on various datasets is compared individually by the authors
[17] who also predict and analyse the level of prediction uncertainty and carry out a sensitivity
analysis. To sum up, not all competitors performed equally on predictions. They come to the
conclusion from research that classifiers without majority voting-based decision-making are
likely to perform at their highest level when predicting defects. Researchers have started to test
semi-supervised approaches to identify software faults in order to address the existing
challenges. As compared to supervised learning, semi-supervised learning may fully exploit
unlabeled examples to predict defects and result in higher classification results with few
labelled samples [18]. Furthermore, 80% of software testing problems are discovered in 20%
of the code, indicating that the majority of software defects are focused in a small number of
software modules. As a result, there is a substantial "class imbalance"[19] in software defect
history data, which makes it difficult to learn from and makes it difficult to estimate results.
All of these researches are aimed at demonstrating the AdaBoost algorithm's effectiveness,
particularly in binary classification issues. We also aim to present the success of the suggested
model versus best known and recent state-of-the-art methods after modifying and repeating
experiments on a real dataset, namely the Software Defect prediction problem (SDP).
Moreover, Table 1 shows the several ML methodologies utilized for cracking out the SDP
complications.

Table 1 Other ML methods for decoding SDP problems

S.No Method
used

Data Set
Used

Problem
Name

Compared
method

Performance
Metrics used
for the study

Ref.

1 KPWE PROMISE &
NASA

SDP ELM, BP, SVM AUC
F-Measure

[20]

2 - PROMISE SD
Estimation

MLP, RBF,
SVM, Bagging,
RF, NB,
Multinomial
NB

Accuracy
Precision
Recall
F-Measure

[21]

3 SVM,
k-NN,
RF, LiR

NASA, ANT SDP - Accuracy,
AUC, RMSE,
RR

[22]

4 L-RNN NASA SFP NB, ANN, LR,
k-NN, C4.5

 AUC, ROC,
TP,TN, FP, FN

[23]

AN EMPIRICAL INVESTIGATION OF PRIMARY DATA ON THE SAVINGS AND INVESTMENT BEHAVIOR
OF INDIAN HOUSEHOLDS

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 979

5 SSA-
BPNN

KC1,JM1,
PC3, PC4

SFP k-NN, SVM,
NB, LDA

AUC,
Confusion
Matrix,
Sensitivity,
Specificity,
Accuracy

[24]

6 ConFS,
CFS

PROMISE,
NASA,
AEEEM

SDP LR, RF, NB,
J48, LMT, SC,
KM, PAM,
FCM, NG

 FA, RBM, AE,
AUC, IQR,

[25]

7 GTB JM1 SDP DT, KNN,
LDA, LR,
MLP,NB,
QDA, RF, SGD

 F1,ROC,AUC,
TPR, FPR

[26]

8 DPDF JM1, MC1,
etc.,

SDP NB,LR,
SVM,RF

gc-Forest, AUC
Z- score

[27]

9 Random
Forest,
XGB

ivy, camel,
jedit-4.1

CPDP - PCA, CPDP
,WPDP
Class imbalance

[28]

10 Voting New xalan-
2.5
New xalan-
2.6

SDP DT,RF,AdB,
GB,NB,KNN,
ANN

Precision,
Recall
 F1-score

[29]

3. Methodology
This work aims to show the performance analysis of various machine learning techniques
including proposed model for SDP on JM1 dataset considered from PROMISE repository [30].
The dataset has 10885 instances and 22 no. of attributes. It does not have any missing attributes.
Table 2 represents more details about the dataset with all attribute name and information. The
proposed WABE method consists of two phases: i) Designing of weighted AdaBoost model to
learn from past software defect profile data ii) Prediction of software defect by using trained
WABE model.
Table 2. JM1 dataset details

AN EMPIRICAL INVESTIGATION OF PRIMARY DATA ON THE SAVINGS AND INVESTMENT BEHAVIOR
OF INDIAN HOUSEHOLDS

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 980

Sl No Attribute Details Attribute type

1 loc McCabe’s line count of code Numeric
2 v(g) McCabe “cyclomatic complexity” Numeric
3 ev(g) McCabe “essential complexity” Numeric
4 iv(g) McCabe “design complexity” Numeric
5 n Halstead total operators +

operands
Numeric

6 v Halstead “volume” any (default)
7 l Halstead “program length” Numeric
8 d Halstead “difficulty” any (default)
9 i Halstead “intelligence” any (default)
10 e Halstead “effort” any (default)
11 b Halstead Numeric
12 t Halstead’s time estimator any (default)
13 lOCode Halstead’s line count Numeric
14 lOComment Halstead’s count of lines of

comments
Numeric

15 lOBlank Halstead’s count of blank lines Numeric
16 lOCodeAndC

omment
comments Numeric

17 uniq_Op unique operators Numeric
18 uniq_Opnd unique operands Numeric
19 total_Op total operators Numeric
20 total_Opnd total operands Numeric
21 defects reported defects boolean (default)

 In this work, AdaBoost [31] has been used to boost the performance of decision trees
for binary classification problems, i.e. software defect or not. Adaboost initially generates and
allocates training and test subsets at random (Here the proposed model predicts the software
defect from 𝑁 no. of decision trees constructed from weighted instances (software profile) in
training data). It iteratively trains the model by picking the training set and gives higher weights
to incorrectly classify observations, so that they will get a better probability of classification in
the next iteration. Based on the decision tree classifier the algorithm assigns the weights to the
classifier for each iteration. This entire procedure is repeated until there is no more
improvement in prediction error or the appropriate number of estimators is formed. The
prediction of software defects has been accomplished by calculating the weighted average of
the forecast of the generated pool of decision trees. Figure 1 depicts a sample depiction of the
proposed methods. As stated previously, the proposed algorithm utilizes the boosting strategy,
and it is evident that a high learning rate is more probable. Gini, entropy, or both are utilised
by a number of decision tree techniques. The Gini index and entropy are the measures that are
used to determine how much information has been gained. Methods for decision trees employ
this value to separate nodes. These two metrics represent the degree of noise and impurity at a
node. A node with many classes, for instance, suggests impurity, whereas a node with only one

AN EMPIRICAL INVESTIGATION OF PRIMARY DATA ON THE SAVINGS AND INVESTMENT BEHAVIOR
OF INDIAN HOUSEHOLDS

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 981

class exhibits purity. Furthermore, a decision tree is a graph-based solution to a problem that
represents all feasible trial-by-decision solutions based on the provided conditions.

Figure 1 Overview of the proposed WABE method.

In this proposed approach weights are updated with support of decision tree classifier
followed by best split and employed as the estimator. Gini Index method is more popular and
powerful in binary classification problems with short a period of time for execution and it’s
computationally very efficient in the state-of-the-art of machine learning methods. Here the
"Gini purity" method was implemented by this classifier used calculate the purity of split
calculated by following equation.

𝐺𝑖𝑛𝑖 = 1 − ෍ 𝑃ଶ(𝑐௜)

௡

௜ୀଵ

The probability of class 𝑐௜ in that node is given by 𝑃ଶ(𝑐௜). Because the Gini index indicates
that the characteristics are split in two, we may compute a weighted sum of the impurity for
each partition individually. The classifier of weighted adaboost model is given below.

𝐶𝑙𝑠௜ = 𝐴𝑑𝑎𝐵𝑜𝑜𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝐷𝑇𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 =ᇱ 𝑔𝑖𝑛𝑖ᇱ, 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ

= 5), 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 = 1.0)
In the above function, there is a split strategy called "best." It is the default value. Another
critical parameter is the "maximum depth of the tree." A larger maximum depth value results
in overfitting, whereas a smaller one results in underfitting. As noted in the model specification,
this value is set to "5". Another parameter used in this model is learning rate which is denoted
as 𝓵, which is indicated by and represents the model's speed of learning. A weight of adaboost
is set to 0.1 ≤ 𝓵 ≤ 1.0 in this study because this range was shown to be more appropriate
during the tests. Another factor influencing accuracy is the number of estimators. The number
of estimators has to increase the WABME and find the accuracy, the default value is 50, which
indicates when boosting should be stopped. For weighted adaboost, the default value is used.

Data set

Distribution 1
 𝑊ଵ

௧ =
ଵ

௡

Data Subset 1 Data Subset 1 Data Subset 1

Initialize the weights

Distribution 2
 𝑊ଶ

௧ =
ଵ

௡

Distribution T
 𝑊௡

௧ =
ଵ

௡

Gini, 𝓵, Gini, 𝓵, Gini, 𝓵,

Output 1 Output 2 Output T

Output

D
T
C

D
T
C

D
T
C

AN EMPIRICAL INVESTIGATION OF PRIMARY DATA ON THE SAVINGS AND INVESTMENT BEHAVIOR
OF INDIAN HOUSEHOLDS

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 982

Algorithm 1 presents the working schema of the proposed model and its step-by-step execution.

Algorithm 1: Pseudo code of Weighted AdaBoost classifier

Input:
Let 𝑋 = {𝑋ଵ, 𝑋ଶ, 𝑋ଷ, … , 𝑋௡} be dataset of software defect profiles,

Where, Training Dataset 𝑋௜ = ൛𝑋௜,ଵ, 𝑋௜,ଶ, 𝑋௜,ଷ, … , 𝑋௜,௠, 𝑠𝑡௜ൟ, 𝑋௜ ∈ 𝑋, 𝑠𝑡௜ ∈

{ᇱ𝐷𝐸𝐹𝐸𝐶𝑇ᇱ, ′𝑁𝑜𝑟𝑚𝑎𝑙′}, represents 𝑖௧௛software profile.
Here 𝑠𝑡௜ denotes software type, which can be either ′𝑫𝑬𝑭𝑬𝑪𝑻ᇱ or ′𝑵𝒐𝒓𝒎𝒂𝒍′.
Learning rate 𝓵
Learning turns 𝜯 times
Begin:

1. Initialize the weights of each 𝑋௜ ∈ 𝑋 : 𝑊௜
௧ =

ଵ

௡

2. for 𝑡 ← 0 𝑡𝑜 𝑇 do

3. Add decision tree sequentially 𝐷𝑇௜(𝑋) by using splitting along
 features by using information gain computation.
 Find out the prediction of software defect from trained model

 𝐷𝑇௜(𝑋) ∶ 𝑠𝑡 = 𝐷𝑇௜(Χ)
 Select the model with least weighted prediction error:

 𝑒௧ = 𝐸𝑟𝑟𝑜𝑟 〈𝑊௧ ቂ1௦௧೔
ᇲ ஷ ௦௧೔

ቃ
௜ୀଵ

௡
〉

 Compute the weight of 𝑡௧௛ model:

𝛿௧ =
ଵ

ଶ
 × ln 〈

ଵି ௘೟

௘೟
〉

 Obtain DT Classifier (w.r.t gini, learning rate, other parameters)

 Update the weight of each software defect profile 𝑋௜

 𝑊
௑೔

ᇲ
௜ାଵ =

ௐ೟ ൫௑೔,భ,௑೔,మ,௑೔,య,…,௑೔,೘,௦௧೔൯௘(ష ഃ೟ × ೞ೟೔ × ವ೅೟(౔౟))

ఏ
,

 // In the Boosting approach, update the distribution using the
 DT classifier.

 Here is the normalization factor such that ෌ 𝑊୧
୲௡

௜ୀଵ
= 1 .

 If (𝑒௧ − 𝑒௧ାଵ < 𝜆 , here is the 𝜆 threshold) then Break
 Else Continue
4. Return the final prediction:

 𝛹஺ௗ௔஻௢௦௧(𝑋) = σ ൫∑ 𝛿௧𝐷𝑇௜(𝑋)்
௜ୀଵ ൯

5. Test the dataset due to
𝛹஺ௗ௔஻௢௦௧ (𝑋)

6. end for

The average of the generated model outputs is used as the final forecast in test cases. If

the prediction is positive than DP= 1, otherwise NDP = 0 is the expected class label

7. END

AN EMPIRICAL INVESTIGATION OF PRIMARY DATA ON THE SAVINGS AND INVESTMENT BEHAVIOR
OF INDIAN HOUSEHOLDS

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 983

Generate the output
 Solution to the test dataset and the success rate

4. Result and Discussion
In this section, the experimental design and result analysis are broken down in great depth
before being presented and discussed.
4.1. Configuration of the Simulation Environment, System, and Parameters
The suggested approach has been implemented on a machine with Intel(R) Core(TM) i7-6700
processor at 3.40 GHz, 4.00 GB RAM, and Windows 10 64-bit operating system specifications.
The simulation environment is comprised of Python Anaconda and Spyder IDE. The
parameters of the classifiers (Table 3) are set by picking appropriate values through trial and
error.
Table 3: Variable Configuration

Classifiers Parameter Setup

RandomForestClassifier n_estimators : 100; Random state : 3
KNeighborsClassifier n_neighbors : 3
LDA Classifier random_state = 1
GaussianNB Priors: ’None’
SGDClassifier loss= ’modified_huber’; shuffle = True; random_state = 101
LogisticRegression random_state = 9
DecisionTreeClassifier
MLP Classifier
QDA Classifier

random_state = 108
random_state = 1
random_state = 1

Proposed Model Training and Testing Spit: 70% - 30%

4.2. Statistical Competitiveness of Models
In this research work, we will compare the prediction performance of individual classifiers in
a relatively recent and notable study in the literature. Then we compare all of the methods
described in [26] from which we import SGD, RF, NB, LR, KNN, DT, LDA, MLP, and QDA
are the nine well-known algorithms discussed for performance evolution with the proposed tree
based model [32,33]. As a result, the same methods are employed and compared here together
with the same dataset. Various performance metrics such as accuracy, TP, FP, TN, FN, TPR,
FPR, precision, TNR, F1 score, and ROC-AUC has been computed. The prediction
performance of RF and DT was comparable to that of separate classifiers, with only slight
variations in accuracy and AUC ratings. The parameters are then adjusted, and a new approach
WABE is developed, then we compare all of the methods described in Table 4 and show the
effectiveness of the proposed method with a difference (3.3%) in accuracy tree based methods.

The proposed weighted model for software defect prediction has been analyzed and
compared with respect to variations in error rate with no. of estimators. Confusion matrix has
been generated from the prediction of the proposed model for both version, i.e. real and
discrete, and presented in Figure 2.a and 2.b respectively.

AN EMPIRICAL INVESTIGATION OF PRIMARY DATA ON THE SAVINGS AND INVESTMENT BEHAVIOR
OF INDIAN HOUSEHOLDS

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 984

Table 4. Comparison of Performance Metrics of all the models & proposed model

Models Performance Metrics
Accuracy TP FP TN FN TPR FPR Precision TNR F1 ROC-

AUC
SGD 80.18 97 148 8631 2009 0.0460 0.0168 0.3959 0.98 0.0825 0.51
RF 92.30 1406 138 8641 700 0.6676 0.0157 0.9106 0.98 0.7704 0.82
NB 80.47 352 371 8408 1754 0.1671 0.0422 0.4868 0.95 0.2488 0.56
LR 80.89 181 155 8624 1925 0.0859 0.0176 0.5386 0.98 0.1482 0.53
KNN 83.09 843 577 8202 1263 0.4002 0.0657 0.5936 0.93 0.4781 0.66
DT 91.77 1631 430 8349 475 0.7744 0.0489 0.7913 0.95 0.7828 0.86
LDA 81.25 266 200 8579 1840 0.1263 0.0227 0.5708 0.97 0.2068 0.55
MLP 55.85 55 33 8746 2051 0.0261 0.0037 0.625 0.99 0.0501 0.51
QDA 80.04 419 485 8294 1687 0.1989 0.0552 0.4634 0.94 0.2784 0.57
Proposed
WABE

93.51 1571 174 8605 535 0.7459 0.0198 0.9002 0.98 0.8158 0.86

We may compute a weighted sum of the impurity for each partition individually of the
proposed approach updated the gini index Pଶ(c୧) and maxdepth of the tree is 5, and find the
accuracy of the proposed method is 93.51 with highest F1 score and ROC-AUC, which shows
that the proposed model is capable to handle the imbalance class problem of software defect
prediction data as compared to other models. The ROC curve of all the simulated models is
shown in Figure 3. In a close ROC analysis, it is noticed that micro-average ROC and macro-
average ROC covers the area of 0.97 and 0.94 respectively. Further, the both of ROC of class
0 (normal) and ROC of class 1 (defective) covered the area of 0.94, which is found better as
compared to other models.

Figure 2. Confusion Matrix of a) WABE Real Classifier, b) WABE Discrete Classifier

AN EMPIRICAL INVESTIGATION OF PRIMARY DATA ON THE SAVINGS AND INVESTMENT BEHAVIOR
OF INDIAN HOUSEHOLDS

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 985

 (a) (b) (c)

 (d) (e) (f)

 (g) (h)

 (j)

Figure 3. ROC Curve Analysis of a) DT, b) KNN, c) LDA, d) LR, e) MLP, f) NB, g) QDA,
h) RF i) SGD and j) Proposed WABE

AN EMPIRICAL INVESTIGATION OF PRIMARY DATA ON THE SAVINGS AND INVESTMENT BEHAVIOR
OF INDIAN HOUSEHOLDS

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 986

After update the weights of adaboost the classification report suggests that our proposed model
resulted into less error rate (Training and Testing error) as shown in Figure 4 and 5
comparisons to all models in state-of-art. In our model we used decision tree classifier as an
estimator by changing their weights than calculate error of real and discrete WABE model
results shown in Table 5.
Table 5. Training and testing error of real and discrete WABE methods

Models Performance Metrics
WABE
Real

Train Error 0.1710 0.0070
Test Error 0.1861 0.0016

WABE
Discrete

Train Error 0.1866 0.0015

Test Error 0.1842 0.0018

The dataset "Learning Curve" and "number of estimators" are shown in Figure 6 and

7, respectively, if the recommended methodology is to be seen. The training data set score and
prediction accuracy are combined to represent the learning curve of a Decision Tree classifier
in Figure 6. This graph demonstrates how accuracy and learning rates may be displayed
simultaneously. These two figures, Figure 6 and 7, and the decision tree were used as an
estimator to split the entire dataset using the best-Split function. Following the division of the
data into training and test sets, which in this study are 75% and 25% respectively, the outcomes
are automatically assessed and the findings are generated. WABE parameter learning rates
are declared to be 0.1 and 1.0, respectively, and success rates are provided in the paper. It is
reported that after changing gini and max depth these two values as specified, WABE had a
fast convergence speed, implying that it gets extremely close to the final result relatively soon.
It is also reported that WABME had a higher success rate in learning due to the other algorithms
listed. Further, the learning rate determines how much each model contributes to the
prediction. Smaller rates may necessitate more decision trees in the , whereas bigger rates may
have fewer trees in the. It is usual to investigate learning rate values on a log scale, such as
between 0.1 and 1.0.

Figure 4. Comparison of Training and Testing
error of all the models with discrete WABE
model

Figure 5. Comparison of Training and Testing
error of all the models with real WABE model
model

AN EMPIRICAL INVESTIGATION OF PRIMARY DATA ON THE SAVINGS AND INVESTMENT BEHAVIOR
OF INDIAN HOUSEHOLDS

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 987

 In our study Figure 6 shows the WABE model mean accuracy for each learning rate is
reported. Here, we find that higher learning rates lead to greater performance on training data.
More trees in the with slower learning rates could improve performance even further.

For better prediction accuracy during the modeling stage, ML methods that use s are

well-known. They play an important function since they are adaptable and can be used by a
variety of estimators. These estimators are ideal for regression and classification issues
because they can reduce bias and variance while also improving model performance. The effect
of the selection of no. of estimators in WABE model on the software defect prediction
accuracy has been presented in Figure 7 respectively. From the first round onwards the no. of
estimator’s range has to increase the outcome of WABE model performs well.

5. Conclusion
In this paper, a Decision Tree estimator-based weighted adaptive boost algorithm has been
proposed for effectively predicts the defects. After performing trials, a classifier is tuned by
updating their weights, and the binary classification problem is resolved. With an efficient
identification of weak classifiers and updated their weights, the proposed method is able to
predict the software defects with a high degree of precision. It claims to predict and perform in
short periods of time, apart from its competition. The accuracy of the proposed model is 93.51%
and is higher than other compared models. As a conclusion, WABE has the greatest accuracy
for predicting output classes. WABE can be updated in the future to get better results with
multi-class classifications. As future work, the proposed method can be used to predict the
defects of some new datasets from various programming language based(C/ C++/JAVA) open-
source projects. The proposed method can be simulated for the defect prediction at code and
function change levels. Also, with the generation of automatic features from the dataset, some
deep learning models like RNN may be used for defect prediction. Moreover, predicting the
type of defect such as security threats, safety-critical factors, planning failure, etc. will be a
challenging future area with the proposed approach.

Figure 6 Learning rate versus accuracy for
 WABE model

Figure 7 No of estimators versus accuracy for
WABE Model

AN EMPIRICAL INVESTIGATION OF PRIMARY DATA ON THE SAVINGS AND INVESTMENT BEHAVIOR
OF INDIAN HOUSEHOLDS

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 988

References
1. Z. Tian, J. Xiang, S. Zhenxiao, Z. Yi and Y. Yunqiang, "Software Defect Prediction

based on Machine Learning Algorithms," 2019 IEEE 5th International Conference on
Computer and Communications (ICCC), 2019, pp. 520-525,
doi:10.1109/ICCC47050.2019.9064412

2. Eken, B., & Tosun, A. (2021). Investigating the performance of personalized models for
software defect prediction. Journal of Systems and Software, 181, 111038.
https://doi.org/10.1016/j.jss.2021.111038

3. Qi, J., Du, J., Siniscalchi, S. M., Ma, X., & Lee, C. H. (2020). On mean absolute error
for deep neural network based vector-to-vector regression. IEEE Signal Processing
Letters, 27, 1485-1489. DOI: 10.1109/LSP.2020.3016837

4. Fukushima, T., Kamei, Y., McIntosh, S., Yamashita, K., & Ubayashi, N. (2014, May).
An empirical study of just-in-time defect prediction using cross-project models.
In Proceedings of the 11th Working Conference on Mining Software Repositories (pp.
172-181). https://doi.org/10.1145/2597073.2597075

5. Iqbal, A., Aftab, S., Ali, U., Nawaz, Z., Sana, L., Ahmad, M., & Husen, A. (2019).
Performance analysis of machine learning techniques on software defect prediction using
NASA datasets. International Journal of Advanced Computer Science and
Applications, 10(5).

6. Ren, J., Qin, K., Ma, Y., & Luo, G. (2014). On software defect prediction using machine
learning. Journal of Applied Mathematics, 2014. https://doi.org/10.1155/2014/785435

7. Prabha, C. L., & Shivakumar, N. (2020, June). Software defect prediction using machine
learning techniques. In 2020 4th International Conference on Trends in Electronics and
Informatics (ICOEI)(48184) (pp. 728-733). IEEE.
DOI: 10.1109/ICOEI48184.2020.9142909

8. Alsaeedi, A., & Khan, M. Z. (2019). Software defect prediction using supervised
machine learning and techniques: a comparative study. Journal of Software Engineering
and Applications, 12(5), 85-100. DOI: 10.4236/jsea.2019.125007

9. Sangeetha, M., & Chandrasekar, C. (2019). An empirical investigation into code smells
rectifications through ADA_BOOSTER. Ain Shams Engineering Journal, 10(3), 549-
553. https://doi.org/10.1016/j.asej.2018.10.005.

10. Zhao, L., Shang, Z., Zhao, L., Zhang, T., & Tang, Y. Y. Software defect prediction via
cost-sensitive Siamese parallel fully-connected neural networks. Neurocomputing, 352,
64-74,(2019). https://doi.org/10.1016/j.neucom.2019.03.076

11. Ni, C., Chen, X., Wu, F., Shen, Y., & Gu, Q. An empirical study on pareto based multi-
objective feature selection for software defect prediction. Journal of Systems and
Software, 152, 215-238,(2019). https://doi.org/10.1016/j.jss.2019.03.012

12. Huang, Q., Xia, X., & Lo, D. (2019). Revisiting supervised and unsupervised models for
effort-aware just-in-time defect prediction. Empirical Software Engineering, 24(5),
2823-2862. https://doi.org/10.1007/s10664-018-9661-2

13. Fan, G., Diao, X., Yu, H., Yang, K., & Chen, L. (2019). Software defect prediction via
attention-based recurrent neural network. Scientific Programming, 2019.
https://doi.org/10.1155/2019/6230953

AN EMPIRICAL INVESTIGATION OF PRIMARY DATA ON THE SAVINGS AND INVESTMENT BEHAVIOR
OF INDIAN HOUSEHOLDS

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 989

14. L. Gong, S. Jiang and L. Jiang, "Tackling Class Imbalance Problem in Software Defect
Prediction Through Cluster-Based Over-Sampling With Filtering," in IEEE Access, vol.
7, pp. 145725-145737, 2019, DOI: 10.1109/ACCESS.2019.2945858

15. Cai, X., Niu, Y., Geng, S., Zhang, J., Cui, Z., Li, J., & Chen, J. (2020). An under‐sampled
software defect prediction method based on hybrid multi‐objective cuckoo
search. Concurrency and Computation: Practice and Experience, 32(5), e5478.
https://doi.org/10.1002/cpe.5478

16. Tong, H., Liu, B., & Wang, S. (2018). Software defect prediction using stacked denoising
autoencoders and two-stage learning. Information and Software Technology, 96, 94-
111. https://doi.org/10.1016/j.infsof.2017.11.008

17. Bowes, D., Hall, T. & Petrić, J. Software defect prediction: do different classifiers find
the same defects?. Software Qual J 26, 525–552 (2018). https://doi.org/10.1007/s11219-
016-9353-3.

18. T. J. Wang, F. Wu and X. Y. Jing, "Semi-supervised Learning Based Software Defect
Prediction," Pattern Recognition and Artificial Intelligence, vol. 30, no. 7, pp. 646-652, 2017

19. X. Zhang and L. M. Wang, "Semi-supervised Learning Approach for Software Defect
Prediction," Journal of Chinese Computer Systems, vol. 39, no. 10, pp. 2138-2145, 2018.

20. Xu, Z., Liu, J., Luo, X., Yang, Z., Zhang, Y., Yuan, P., ... & Zhang, T., Software defect
prediction based on kernel PCA and weighted extreme learning machine. Information
and Software Technology, 106, 182-200,(2019).
https://doi.org/10.1016/j.infsof.2018.10.004

21. Yalçıner, B., & Özdeş, M., Software Defect Estimation Using Machine Learning
Algorithms. In 2019 4th International Conference on Computer Science and Engineering
(UBMK), September, (pp. 487-491). IEEE,(2019). DOI: 10.1109/UBMK.2019.8907149

22. Kakkar, M., Jain, S., Bansal, A., & Grover, P. S., Evaluating Missing Values for Software
Defect Prediction. In 2019 International Conference on Machine Learning, Big Data,
Cloud and Parallel Computing (COMITCon), February, (pp. 30-34). IEEE, (2019)
DOI: 10.1109/COMITCon.2019.8862444

23. Turabieh, H., Mafarja, M., & Li, X. (2019). Iterated feature selection algorithms with
layered recurrent neural network for software fault prediction. Expert systems with
applications, 122, 27-42. https://doi.org/10.1016/j.eswa.2018.12.033

24. Kassaymeh, S., Abdullah, S., Al-Betar, M. A., & Alweshah, M. (2022). Salp swarm
optimizer for modeling the software fault prediction problem. Journal of King Saud
University-Computer and Information Sciences, 34(6), 3365-3378.
https://doi.org/10.1016/j.jksuci.2021.01.015

25. Kondo, M., Bezemer, CP., Kamei, Y. et al. The impact of feature reduction techniques
on defect prediction models. Empir Software Eng 24, 1925–1963 (2019).
https://doi.org/10.1007/s10664-018-9679-5 .

26. S. Anuradha, K. E. R. G. R. (2019). Gradient Tree Boosting Approach for Software
Defect Prediction. International Journal of Advanced Science and Technology, 28(20),
750 -. Retrieved from http://sersc.org/journals/index.php/IJAST/article/view/2912.

27. Zhou, T., Sun, X., Xia, X., Li, B., & Chen, X. (2019). Improving defect prediction with
deep forest. Information and Software Technology, 114, 204-216.
https://doi.org/10.1016/j.infsof.2019.07.003

AN EMPIRICAL INVESTIGATION OF PRIMARY DATA ON THE SAVINGS AND INVESTMENT BEHAVIOR
OF INDIAN HOUSEHOLDS

Journal of Data Acquisition and Processing Vol. 38 (1) 2023 990

28. Goel, L., Sharma, M., Khatri, S. K., & Damodaran, D. (2020). Defect Prediction of Cross
Projects Using PCA and Learning Approach. In Micro-Electronics and
Telecommunication Engineering (pp. 307-315). Springer, Singapore.
https://doi.org/10.1007/978-981-15-2329-8_31

29. Sohan, M. F., Kabir, M. A., Jabiullah, M. I., & Rahman, S. S. M. M. (2019, February).
Revisiting the class imbalance issue in software defect prediction. In 2019 International
Conference on Electrical, Computer and Communication Engineering (ECCE) (pp. 1-6).
IEEE. DOI: 10.1109/ECACE.2019.8679382

30. Sayyad Shirabad, J. and Menzies, T.J., The PROMISE Repository of Software
Engineering Databases. School of Information Technology and Engineering, University
of Ottawa, Canada, Available: http://promise.site.uottawa.ca/SERepository.

31. Prabha, Chander & Shivakumar, N. (2020). Software Defect Prediction Using Machine
Learning Techniques. Conference: 2020 4th International Conference on Trends in
Electronics and Informatics (ICOEI). 728-733.
https://doi.org/10.1109/ICOEI48184.2020.9142909.

32. M atloob, F., Ghazal, T. M., Taleb, N., Aftab, S., Ahmad, M., Khan, M. A., ... & Soomro,
T. R. (2021). Software defect prediction using learning: A systematic literature
review. IEEE Access.

33. A lsawalqah, H., Hijazi, N., Eshtay, M., Faris, H., Radaideh, A. A., Aljarah, I., &
Alshamaileh, Y. (2020). Software defect prediction using heterogeneous classification
based on segmented patterns. Applied Sciences, 10(5),
1745. https://doi.org/10.3390/app10051745

