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Abstract 
The quest for unified solution for handling multicollinearity and autocorrelation jointly has 
resulted in a great deal of interest in two-stage approaches within the linear modelling paradigm 
recently. This paper contributes to this growing interest with Two-Stage Ridge Quantile 
Regression (TRQR) and Two-Stage Lasso Quantile Regression (TLQR) methods.  The two-
stage methods fundamentally involve the application of appropriate transformation to linear 
regression data followed by regularization to control respectively, autocorrelation and 
multicollinearity. The aim is to determine if regularized and robust regression methods reduce 
total model error, and find which method is most effective for dealing with autocorrelation and 
multicollinearity problems. The utility of the methods were assessed using simulations based 
on models with small (2) to relatively large (8) predictors, in comparison with other regression 
methods using the Mean Squared Error criterion. The results indicate that the TRQR method, 
at 0.5 quantile level, is most suitable for handling multicollinearity and autocorrelation 
problems with many (8 or more) predictor variables. However, the Two-Stage Ridge 
Regression method performs better with few (2 or less) predictor variables. The findings show 
that each method is affected by sample size, number of predictors or multicollinearity level. 
Keywords: Autocorrelation, Multicollinearity, Two-Stage method, Ridge regression, Lasso 
regression, Mean squared error 
  
1. Introduction 

The Ordinary Least Squares (OLS) estimate is considered as Best Linear Unbiased 
Estimator (BLUE). It is useful for investigating the linear relationships between variables of 
interest. OLS regression is based on assumptions, and when those assumptions hold true, the 
OLS regression produces the best estimates. When the assumptions are met, the OLS generates 
better estimates than any other linear model estimating methods, according to the Gauss-
Markov theorem (Greene, 2012). When TX X  is non-singular, the least squares estimate can 
be evaluated directly from the data by  

1ˆ ( )T T  X X X y                   (1)  

          
The general linear regression model makes the fundamental assumption that there is no 

correlation (or multicollinearity) between the predictors and that there is no autocorrelation. 
Multicollinearity develops when the regression model contains highly correlated predictors. 
Again, when the uncorrelated error terms assumption is violated, autocorrelation occurs. 
Autocorrelation leads to inefficiency of the OLS estimates.  

The effectiveness of regression analysis is highly dependent on the structure of correlations 
between predictive variables. If the predictors are orthogonal, OLS estimator is optimal among 
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the class of linear unbiased estimators. Multicollinearity violates the assumption that the design 
matrix X  is of full rank, rendering OLS estimation unfeasible. The nature of multicollinearity 
can be classified into perfect (or exact) and imperfect (or approximate). In the case of perfect 
multicollinearity, the matrix X  and matrix TΧ Χ  lack full rank. Consequently, the inverse 

matrix 1( )T X X  cannot be computed, therefore   1ˆ T T
OLS


β X X X y  cannot be solved and the 

OLS estimator has no unique solution (Hashem, 2014).  
The case of imperfect multicollinearity is the most common situation when the variables 

are highly, but not perfectly correlated. The matrix TΧ Χ  and matrix X  have full rank, 
however, it is not far from being rank-deficient. Thus, the matrix TΧ Χ  is quasi-singular (ill-

conditioned). The inverse of matrix 1( )T X X  can be computed, therefore   1ˆ T T
OLS


β X X X y  

can be solved and the OLS estimator has a unique solution. However, due to highly correlated 
predictors in the model, the determinant TX X  reaches a value near zero and the computed 

OLS estimate possesses a very large variance, 2 1ˆ( ) ( )T
OLSvar  β X X  (Giacalone, Panarello, 

& Mattera, 2018). In this scenario, regression estimates are determinate but possess large 
standard error implying that the coefficients cannot be estimated with great precision.  

When assumption of no correlation (or multicollinearity) between predictor variables is 
violated, OLS estimates become unstable, have large variances, and may have an incorrect sign 
(Greene, 2012). Furthermore, when the multicollinearity degree gets higher, the OLS estimate 
becomes imprecise, the model may have insignificant tests, wider confidence intervals, and the 
OLS being the BLUE does not hold anymore. The existence of multicollinearity makes 
estimating the unique effects of distinct variables in the regression model unfeasible.  

Several methods in literature have been proposed to handle multicollinearity problem in 
regression analysis. For instance, Stein (1956) proposed stein estimator; Least Absolute 
Shrinkage and Selection Operator (LASSO) developed by Tibshirani (1996); Hoerl and 
Kennard (1970) developed Ridge regression; Zou and Hastie (2005) designed the Elastic net, 
by combining the 1L -penalty (Lasso) and the 2L -penalty (Ridge); Massy (1965) suggested 

Principal Component Regression estimator (PCR); and Wold (1966) introduced Partial Least 
Squares to handle multicollinearity problem. According to studies in literature, researchers 
have devised a combined-estimator technique to handling multicollinearity problem in 
regression analysis that outperforms the single-estimator approach. For instance, the r k  
class estimator (Baye & Parker, 1984), Liu estimator (Liu, 1993), r d  class estimator 
(Kaciranlar & Sakallioglu, 2001), Principal component two-parameter (PCTP) estimator 
(Chang & Yang, 2012), and  ,r k d  class estimator (Ozkale, 2012). 

Again, when the assumption of no autocorrelation is not met, the OLS estimator, although 
linear and unbiased no longer have minimum variance among all linear unbiased estimators 
(Gujarati, 2003). The OLS estimates are consistent and unbiased, even with correlated error 
terms. The problem is the efficiency of these estimates. OLS may underestimate the standard 
error of the coefficients. Standard errors that are underestimated can make predictors appear 
significant when indeed they are not. This leads to wrong standard errors for the regression 
coefficient estimates, therefore, testing of hypotheses is no longer valid. The F-statistic and t-
statistic will tend to be higher and therefore, may not be valid (Gujarati, 2003). Forecasts based 
on OLS in the presence of autocorrelation will be unbiased, but inefficient due to inefficient 
estimates of the regression parameters.  

Several corrective procedures based on variable transformations have been proposed, to 
correct for autocorrelation. They are, the use of Generalized Least Squares (GLS) or Feasible 
Generalized Least Square (FGLS) techniques such as the Prais-Winsten estimator (Paris & 
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Winstein, 1954), Cochrane-Orcutt estimator (Cochrane & Orcutt, 1949), Hildreth and Lu 
estimator (Hildreth & Lu, 1960) and Maximum Likelihood estimator (Beach & Mackinnon, 
1978). 

Inevitably, both problems (autocorrelation and multicollinearity) can coexist in a linear 
regression model, hence proven in literature (Ayinde, Lukman & Arowolo, 2015; Bayhan & 
Bayhan, 1998). Eledum and Alkhalifa (2012) developed the generalized two stages ridge 
regression (GTR) by combining the generalized ridge regression (GRR) with the two-stage 
procedure (TS). Eledum and Zahri (2013) introduced the two-stage ridge regression (TR) 
method to correct for both problems. Dawoud and Kaçıranlar (2016) proposed the Two-Stage 
Liu (TL) method to address autocorrelation and multicollinearity issues in linear models. 
Arowolo, Adewale and Kayode (2016) compared the Two-Stage Principal Component 
regression (T-PC) and Two-Stage Partial Least Square (T-PLS). Ozbay, Kaçıranlar and 
Dawoud (2017) proposed Feasible Generalized Restricted Ridge regression (FGRR) method 
to take account of both problems. Zubair and Adenomon (2021) proposed the two-stage K L  
estimator to mitigate both problems. 

Regularization (for example, Ridge and Lasso) in Quantile regression (QR) has been shown 
to improve prediction accuracy (Bager, 2018; Li & Zhu, 2008; Suhail, Chand, & Kibria, 2020). 
As a result, it is vital to explore regularized and robust regression methods in handling 
multicollinearity and autocorrelation problems, hence, the need for this research. The research 
seeks to develop Two-Stage Ridge Quantile regression (TRQR) and Two-Stage Lasso Quantile 
regression (TLQR) methods, and compare their performances with other popular methods in 
literature. The aim is to determine if regularized and robust regression methods reduce total 
model error and which of the methods under consideration is the most effective in handling 
autocorrelation and multicollinearity problems.  

The literature reveals a number of methods for addressing multicollinearity and 
autocorrelation problems. This paper exploits the regularized and robust regression methods to 
develop Two-Stage Ridge Quantile regression (TRQR) and Two-Stage Lasso Quantile 
regression (TLQR) methods in handling multicollinearity and autocorrelation problems. 

The progression of the rest of the paper is organized as follows. Section 2 develops the 
TRQR, TLQR and other regression methods. Section 3 presents the simulation study conducted 
to evaluate the methods.  Section 4 presents the results and, Section 5 concludes the paper. 
 

 
1. Methodology 

1.1 Linear Regression Model 

A linear regression model describes the relationship between one or more predictor 
variables, pXXX ,,, 21  , and a response variable, y.  The model relating the response, y, to p 

predictor variables, 1 2, , , pX X X , is given in matrix form as 

 y Xβ e ,           (2)             
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And β  is a ( 1) 1p    vector of unknown parameters and e  is an 1n  vector of random error 

terms with  E 0e  and   2var ne I . The response variable is arranged in the 1n  vector 

y  and the data for the predictor variables are in the ( 1)n p   matrix X . The least square 

estimator is given by 1ˆ ( )T T  X X X y  
 

1.2 Two-Stage Method 

The two-stage method employs variable transformation in particular to deal with 
autocorrelation. Various transformation approaches have been proposed by different authors. 
These approaches are categorized into those that utilize P  matrix for transformation and those 
that use P  matrix for transformation.  

We adopted the P  transformation matrix as used by other authors (Dawoud & Kaçıranlar, 
2016; Eledum & Zahri, 2013; Zubair & Adenomon, 2021). The P  transformation matrix is 

obtained by inserting a new first row with 21   in the first position and zero in the other 

positions in the transformation matrix, as given below. 
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Now, pre-multiplying both sides of Equation (2) by the P  transformation matrix, we get an 
equivalent linear model 

 Py PXβ Pe             (3)  

Let  y Py ,  X PX  and  e Pe , then E( ) 0 e  and 2cov( ) n e I . 

The transformation model is given by 

   y X β e            (4)  

Model (4) satisfies the error assumption 2(0, )ne N   I  based on the error model 

 assumed in Equation (1).  
Therefore, the least squares estimate for the Model (4), which is called the Two-stage is 

1ˆ ( )T T
TS      X X X y          (5)  
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The matrix P  can also be specified such that T P P I , and   must be positive definite such 
that 1T  P P . Then the OLS estimate of the transformed variable PX  and Py  in Equation 
(3)  have all of the optimal OLS properties, and the usual inferences could be true. 
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After obtaining  1 , the Two-stage  estimator  is defined as  

                     1 1 1ˆ ( )T T
TS     X X X y . 

 
We can find 1ˆ   after estimating  , then the Two-stage can be given by 

1 1 1ˆ ˆ ˆ( )T T
TS     X X X y         (6)  

Because the rank of X  is equal to the rank of X , the multicollinearity in the datasets still 
affects the Two-stage method. Regularization is then applied to handle the multicollinearity 
problem. 
 
2.3 Two-Stage Ridge Regression Method (TR) 

The estimates for the Ridge regression parameters are obtained by minimizing the residual 
sum of squares subject to an 2L -penalty on the coefficients. 

2

1 1
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pn
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i j
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j
j

t


 , 0t      (7)  

Equivalently, the following minimization problem defines Ridge regression 

2 2

1 1 1

ˆ min ( )
p pn

Ridge i ij j j
i j j

k


  
  

 
   

 
  y X , 0k        (8)  

where 1, 2, ,i n  ;   1, 2, ,j p   and the amount of shrinkage is controlled by the 
regularization parameter, k . The parameter t  in Equation (7) is clearly related to the parameter 
k  in Equation (8). This means that for a given value ,k there exists a value t  for which the 



LINEAR MODEL IN THE PRESENCE OF MULTICOLLINEAR PREDICTORS AND AUTOCORRELATED 
ERRORS: INSIGHTS FROM REGULARIZED AND ROBUST REGRESSION METHODS 

Journal of Data Acquisition and Processing Vol. 39 (1) 2024      41 
 

estimation Equations (7) and (8) yield the same result. Therefore, the regularized solution is 
given as 

1ˆ ( )T T
RR pk  X X I X y                                                                                         (9)  

where I  is the p p  identity matrix and the constant 0k   is the regularization parameter.  
The two-stage process used to alter the data is now applied to Ridge regression to produce 

the Two-stage Ridge regression (TR) method. We replaced y  and X  in Equation (8) by y  

and X , respectively. The solution of the coefficients can be written as 

2 2

1 1 1

ˆ min ( )
p pn

TR i ij j j
i j j

k


   
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 
  y X , 0k          (10)  

where 1, 2, ,i n  ;   1, 2, ,j p   and k  is the regularization parameter. In matrix form 
2 2

22
ˆ minTR k


     y X  

Solving Equation (10) has closed form solution, and the rank of  X  is equal to the rank of  X
. Therefore, regularized solution is given by  

1ˆ ( )T T
TR pk      X X I X y            (11)  

Following Equations (6) and (9), the Two-stage Ridge regression estimator proposed by 
Eledum and Zahri (2013) takes the form 

1 1 1ˆ ˆ ˆ( )T T
TR pk      X X I X y .         (12)  

 
 

1.3 Two-Stage Lasso Method (TLasso) 

The Lasso method imposes an 1L -penalty on the regression coefficients. The Lasso 

minimizes the residual sum of squares subject to the sum of the absolute value of the 
coefficients being less than a constant.  
The Lasso estimate ̂  is defined by 

2

1 1
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An equivalent form of the Lasso is 

2

1 1 1

ˆ min ( )
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Lasso i ij j
i j j
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where 1, 2, ,i n  ;   1, 2, ,j p   and 0k   is the regularization parameter. 
In matrix form 

2

2 1
ˆ minLasso k


    y X          (15)  

The Lasso estimation is a convex optimization issue that can be addressed using a quadratic 
programming algorithm for a given k . Therefore, solving Equation (14) does not provide a 
closed form expression. 

The two-stage procedure which was used to arrive at the transformed data is now applied 
to Lasso regression to get the Two-stage Lasso regression (TLasso) method. We replaced y  

and X  in Equation (14) by y  and X , respectively. The solution can be expressed as 
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2
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where 1, 2, ,i n  ;   1, 2, ,j p   and k  is the regularization parameter. In matrix form 
2

12
ˆ minTLasso k


     y X  

Instead of running the Lasso on y  vector of response variable and X  matrix of predictors, we 

employed y  vector of response variable and X  matrix of predictors. 
 
 
1.4 Two-Stage Regularized and Robust Regression Methods 

The robust regression method employed in this paper is the Quantile Regression method 
(QR). The QR method, as introduced by Koenker and Bassett (1978), is widely used to describe 
the distribution of a response variable given a set of predictor variables. QR allows estimating 
the entire distribution of the response variable’s conditional quantiles. 

A typical QR model is formulated as 
( ) TQ  y X X β             (17)  

where ( )Q     is the conditional quantile function for the th  conditional quantile with 

0 1   ,   determines the quantile level, X  is a design matrix and β is a vector of parameters 

related to the th  QR. QR provides separate models for each conditional quantile   of interest. 
We employed 0.25, 0.5 and 0.75 quantile levels in the analysis of the models. 
Regression coefficients   can be estimated by 

1

ˆ min ( )
n

T
i i

i


 





   y X β            (18)  

We then combined the two-stage method with regularized and quantile regression methods. 
The regression methods formulated are Two-stage Ridge Quantile regression and Two-stage 
Lasso Quantile regression. These regression methods were used to estimate the linear model 
with autocorrelation and multicollinearity problems. 

 
1.4.1 Two-Stage Ridge Quantile Regression Method (TRQR) 

The Ridge Quantile Regression (RQR) used the ridge coefficients to build the QR model. 

The RQR is achieved by adding 2L -penalty to the quantile loss function.  

The RQR estimate   using  

2
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T
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 y X , 0k         (19)  

where 1, 2, ,i n  ;   1, 2, ,j p   and k is the ridge parameter. 
The two-stage process used to alter the data is now used for Ridge Quantile regression to 

produce the Two-stage Ridge Quantile regression (TRQR) model. In particular, replacing y 

and X  in Equation (19) by 
y  and X , respectively, yields 

the TRQR estimate  of   as 
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1, 2, ,i n  ;   1, 2, ,j p   and 0k   is the regularization parameter. 
Thus,  the Two-Stage Ridge Quantile regression obtained by fitting the Ridge Quantile 

Regression using the data 
y  and X . 

 
1.4.2 Two-Stage Lasso Quantile Regression Method (TLQR) 

The 1L -penalty is added to the quantile loss function to formulate the Lasso Quantile 

Regression (LQR) method. 
The LQR estimate   is given by 

1 1

ˆ min ( )
pn

T
LQR i i j

i j

k


   
 


 

   
 
 y X , 0k         (21)  

where 1, 2, ,i n  ;   1, 2, ,j p   and 0k   is the regularization parameter controlling the 

amount of penalty. The second term in Equation (21) is the 1L -penalty, which is required for 

the Lasso to succeed. As the regularized quantile loss function is convex and piecewise linear, 
the LQR method can be computed by linear programming. 

The two-stage procedure which was used to arrive at the transformed data is now applied 
to Lasso quantile regression to produce the Two-stage Lasso Quantile regression (TLQR) 

method. We now replace y and X  in Equation (21) by 
y  and X , respectively, yielding 

the TLQR estimate   as  

1 1

ˆ min ( )
pn

T
TLQR i i j

i j

k


    


 


 
   

 
 y X , 0k        (22)  

1, 2, ,i n  ;   1, 2, ,j p   and 0k   is the regularization parameter. 

We now run the Lasso Quantile regression on 
y  vector of response variable and X  matrix of 

predictors, instead of running the Lasso Quantile regression on y vector of response variable 

and X  matrix of predictors. 
 
 
2. Simulation Study 

We evaluated the performance of the regression methods through simulation. The 
implementation of the methods was done in R. Simulation followed McDonald and Galarneau 
(1975) and Kibria (2003). The predictor variables were generated as follows 

1
22

, 1(1 ) iij j i px z z         for  1, 2, ,i n      and    1, 2, ,j p   

where ijz  is an independent standard normal pseudo random number, and  is specified so that 

the theoretical correlation between any two predictor variables is given by 
2 . 

The response variable was generated by the equation 

0 1 1 2 2i i i p ip iy x x x         . 

The regression coefficients are assumed to be unity with 0  taken to be zero. Also, i is 

generated from an )1( AR  process as 1i i ie   ,  1, 2, ,i n  , 
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where ie  are independent normal pseudo random numbers and   is autoregressive coefficient 

such that 1  . The error terms were generated from standard normal, (0,1)ie N , so that ,
2

2
0,

1
e

i N


 
    

 based on the distributional property of the autocorrelated error terms. 

The design was created by varying multicollinearity levels (0.7, 0.9 and 0.99), with the 
number of predictor variables (p = 2 and 8), sample size (n = 25, 50, 200 and 500) and degrees 
of autocorrelation (ρ = 0.1 and 0.9). It is of interest to see the effect of the sample sizes, number 
of predictor variables, multicollinearity levels and degrees of autocorrelation on the 
performance of the regression methods. The simulation was replicated 2000 times in order to 
obtain the approximate distribution. 

We generated dataset with 0.7, 0.9 and 0.99 multicollinearity levels, 0.1 degree of 
autocorrelation and another dataset with 0.7, 0.9 and 0.99 multicollinearity levels with 0.9 
degree of autocorrelation. For both settings we use two and eight predictor variables with 
different sample sizes; n = 25, 50, 200 and 500. 

We use the Mean Squared Error (MSE) criterion to investigate the performance of the OLS, 
RR, Lasso, TR, TLasso, RQR, LQR, TRQR and TLQR methods. The estimated MSE for each 
of the regression methods is given by 

2000

1

1ˆ ˆ ˆ( ) ( ) ( )
2000

T
r r

r
MSE     


    

where 1, 2, , 2000r   , ˆ
r  denotes parameter estimated for the thr  replication of the 

experiment and   is the true parameter value. The regression method with the smallest MSE 
value is considered best. 
 
4. Results and Discussion 
This section presents the results obtained from the simulation study.   
Table 1 shows the simulation results of the estimated MSEs for two predictor variables when 
ρ = 0.1 and across the different levels of multicollinearity (0.7, 0.9 and 0.99). The results 
revealed that, TR method outperforms the other methods in many of the cases, especially with 
large sample sizes. In addition, it can be observed that TRQR method produced better results 
than TLQR method, but their performances to the other methods (RR, Lasso, TR and TLasso) 
are not satisfactory when there is multicollinearity with less or no autocorrelated errors for two 
predictor variables. Therefore, the TR method produced the most efficient results in terms of 
lower MSE when there is multicollinearity with less or no autocorrelated errors. 
 Table 2 presents the estimated MSEs for the two predictor variables when ρ = 0.9. It is evident 
that the two-stage methods record better performance at levels of multicollinearity with 
increased sample sizes in general. Nevertheless, TR outperforms all the two-stage methods.  
Furthermore, the TR and TLasso exhibit better performance than the RR method and Lasso. In 
the case of the OLS, better competition is registered with Lasso for large sample size (n = 500) 
at 0.7 multicollinearity level. Interestingly, it can also be seen that the TRQR method at   
0.5 outperforms the other methods (RQR, LQR and TLQR). But, the TLQR method is a close 
contender to TRQR method in terms of performance. Again, TRQR and TLQR methods have 
smaller MSE values than the RQR method and LQR method respectively. However, the TR 
method and TLasso method performs better than the TRQR method and TLQR method in the 
presence of multicollinearity and autocorrelation problems. Finally, it clear that the TR is 
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effective for handling multicollinearity and autocorrelations in linear models with less number 
of predictors, in particular, two predictor variables models. 

 
4.1 Simulation Results for Two Predictor Variables 

Table 1: Simulation Results of MSE for 2  Predictor Variables when ρ = 0.1 

γ² n OLS RR Lasso TR TLasso 
RQR LQR TRQR TLQR 

τ = 0.5 τ = 0.5 τ = 0.5 τ = 0.5 

  25 0.2418 0.1930 0.2392 0.1999 0.2451 0.2961 0.4333 0.3048 0.5177 

0.7 50 0.1101 0.0948 0.1111 0.0935 0.1092 0.1405 0.1722 0.1348 0.1702 

 200 0.0277 0.0262 0.0278 0.0250 0.0266 0.0373 0.0399 0.0359 0.0446 

  500 0.0104 0.0101 0.0104 0.0096 0.0099 0.0146 0.0149 0.0139 0.0192 

 25 0.5595 0.3086 0.4660 0.3317 0.4851 0.6378 1.2905 0.4850 0.7907 

0.9 50 0.2524 0.1510 0.2422 0.1528 0.2432 0.2232 0.4127 0.2274 0.3824 

 200 0.0645 0.0476 0.0646 0.0464 0.0631 0.0698 0.0905 0.0681 0.0877 

 500 0.0239 0.0198 0.0240 0.0192 0.0233 0.0298 0.0344 0.0288 0.0330 

  25 4.8859 1.8475 1.7691 2.1094 1.9196 3.6056 5.5099 2.0179 3.2950 

0.99 50 2.1929 0.7975 0.8884 0.8368 0.8506 0.9590 1.6867 0.9758 2.0657 

 200 0.5652 0.2260 0.3917 0.2243 0.3916 0.3186 0.6547 0.3215 0.6444 

  500 0.2078 0.0845 0.1895 0.0835 0.1875 0.1358 0.2928 0.1318 0.2851 

 
Table 2: Simulation Results of MSE for 2 Predictor Variables when ρ = 0.9 

γ² n OLS RR Lasso TR TLasso 
RQR LQR TRQR TLQR 

τ = 0.5 τ = 0.5 τ = 0.5 τ = 0.5 

  25 3.1218 2.9191 3.0372 0.4514 0.4850 3.4062 3.5628 0.5430 0.7035 

0.7 50 1.8836 1.7845 1.8648 0.1233 0.1309 2.0673 2.2119 0.1633 0.1811 

 200 0.5666 0.5475 0.5665 0.0194 0.0200 0.6365 0.6682 0.0264 0.0273 

  500 0.2312 0.2266 0.2312 0.0070 0.0072 0.2640 0.2714 0.0096 0.0098 

 25 4.0379 3.2257 3.4835 0.5394 0.6674 3.8431 4.3489 0.6977 1.0326 

0.9 50 2.3865 1.9389 2.1587 0.1597 0.2140 2.4807 2.6633 0.2386 0.2981 

 200 0.7332 0.6117 0.7195 0.0329 0.0405 0.7563 0.9011 0.0457 0.0547 

  500 0.2989 0.2585 0.2984 0.0134 0.0150 0.3181 0.3751 0.0188 0.0206 

 25 16.4996 7.8240 8.3649 1.6548 1.7030 8.6851 9.1177 1.7844 3.4565 

0.99 50 9.2609 4.1998 4.6072 0.5295 0.6952 4.5766 6.5239 0.6584 1.2261 

 200 2.9996 1.3729 1.4481 0.1292 0.2717 1.4670 2.2833 0.1901 0.4129 

  500 1.2198 0.5621 0.7481 0.0548 0.1202 0.6346 1.1716 0.0814 0.1675 

 
4.2 Simulation Results for 8 Predictor Variables model 
In this section the results of the 8 predictor variable linear model is presented. 
Table 3 records the performance statistics of the methods for the 8 predictor variables linear 
model for ρ = 0.1,    0.5 at the levels of the multicollinearity and sample sizes considered 
in the simulation study.  Clearly, the RQR and TRQR outperform the other methods in many 
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of the cases when there is multicollinearity with less or no auto-correlated errors. However, the 
RQR gives better results than the TRQR. The TRQR appears to have an improved performance 
as sample size increases with high multicollinearity level. Also, the performance of TLQR 
method is not satisfactory with less or no autocorrelated errors.  
 
Table 3: Simulation Results of MSE for 8 Predictor Variables when ρ = 0.1 

γ² n OLS RR Lasso TR TLasso 
RQR LQR TRQR TLQR 

τ = 0.5 τ = 0.5 τ = 0.5 τ = 0.5 

  25 1.6787 1.0687 1.4790 1.1084 1.5264 0.9183 2.1535 0.9943 2.2671 

0.7 50 0.6195 0.5217 0.6123 0.5300 0.6236 0.4775 0.8355 0.4885 0.8258 

 200 0.1292 0.1249 0.1299 0.1227 0.1278 0.1418 0.1669 0.1389 0.1633 

  500 0.0499 0.0493 0.0503 0.0483 0.0493 0.0590 0.0629 0.0571 0.0604 

 25 4.8017 1.8207 2.9806 1.9794 3.1281 1.6880 4.8097 1.9172 4.8175 

0.9 50 1.7925 1.1115 1.4981 1.1314 1.5334 0.7922 2.2668 0.8509 2.2643 

 200 0.3792 0.3417 0.3787 0.3382 0.3752 0.2469 0.4771 0.2467 0.4684 

 500 0.1441 0.1384 0.1445 0.1365 0.1425 0.1208 0.1792 0.1169 0.1739 

  25 46.7882 6.6286 8.7624 8.7980 9.3431 8.6848 17.7540 9.5005 18.2603 

0.99 50 18.2252 2.8240 6.2494 3.1046 6.3540 4.0847 12.6518 4.2099 12.7195 

 200 3.7838 1.6310 2.5233 1.6145 2.5080 0.9980 4.0489 0.9877 3.9894 

  500 1.4164 0.9746 1.1889 0.9634 1.1793 0.4058 1.7381 0.4015 1.6947 

 
Table 4 reports the performance statistics of the methods for   0.5, ρ = 0.9, at the various 
levels of multicollinearity and autocorrelations assumed for the study.  Again, it clearly seen 
that TRQR at   0.5 outperforms the other methods when the degree of autocorrelation is 
high and across the different degrees of multicollinearity, except in five cases where TR is 
superior. It can be seen that MSE values of TR is relatively smaller than the estimated MSE 
values of TRQR at   0.5 for sample sizes 50 ≤ n ≤ 500 with moderate multicollinearity level 
(γ² = 0.70). Again, the TR method is best for small sample sizes (25 ≤ n ≤ 50) with high 
autocorrelation and severe multicollinearity (γ² = 0.99). The TRQR performs well as the 
multicollinearity level increases with increasing sample size. Also, the TRQR method at   
0.5 has the least MSE values in comparison to RQR, LQR and TLQR methods for all sample 
sizes (n = 25, 50, 200 and 500) and across the various degrees of multicollinearity (0.7, 0.9 and 
0.99). However, the TLQR appears to have an improved performance over OLS, RR, Lasso, 
RQR and LQR when there is multicollinearity and high autocorrelated errors. Generally, the 
results suggest that TRQR at   0.5 can render significant control for multicollinearity and 
autocorrelation problems in linear models. 
 
Table 4: Simulation Results of MSE for 8 Predictor Variables when ρ = 0.9 

γ² n OLS RR Lasso TR TLasso 
RQR LQR TRQR TLQR 

τ = 0.5 τ = 0.5 τ = 0.5 τ = 0.5 

  25 7.1675 5.4677 5.6017 1.9071 2.3615 4.9676 7.6637 1.7595 2.3773 

0.7 50 3.8086 3.4473 3.4439 0.5132 0.5905 3.0516 4.7823 0.5191 0.7578 
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 200 1.0566 1.0361 1.0493 0.0796 0.0828 0.9632 1.3664 0.0919 0.1012 

  500 0.4308 0.4276 0.4313 0.0290 0.0296 0.4346 0.5444 0.0337 0.0348 

 25 15.6344 7.4124 8.2774 2.5912 3.7315 7.0509 8.2266 2.4752 3.6621 

0.9 50 8.1538 5.6426 5.4864 0.9008 1.2613 4.3174 8.7226 0.7439 1.8382 

 200 2.2204 2.0453 1.9599 0.2007 0.2241 1.2369 2.8869 0.1701 0.2719 

  500 0.9061 0.8774 0.8805 0.0789 0.0824 0.5506 1.2039 0.0760 0.0965 

 25 127.970 19.349 19.329 7.0111 9.3557 20.017 44.122 7.488 14.117 

0.99 50 66.8472 11.2721 13.2799 1.6489 4.8601 12.676 34.232 2.4334 9.8676 

 200 17.9437 7.9578 6.4107 0.8966 1.6259 3.7701 13.180 0.6064 2.4553 

  500 7.3262 5.0926 3.9324 0.5441 0.7300 1.6444 6.8617 0.2472 0.9558 

 
The performance comparison of only the quantiles-based methods in implementation for both 
the two and eight predictors linear models at the assumed levels of multicollinearity, and error 
autocorrelations, and quantile levels are presented in Table A1 and Table A2 in the Appendix.  
It can be observed that the simulated data support 0.5 quantile regression model evidenced by 
RQR, LQR, TRQR and TLQR exhibiting better performance at   0.5 than  the other levels, 
  0.25 and   0.75. 
 
5. Conclusion 
In this paper, we have developed Two-Stage Ridge Quantile regression (TRQR) and Two-
Stage Lasso Quantile regression (TLQR) for linear models.  The applicability of the methods 
to both multicollinearity and autocorrelation problems is examined in comparison with other 
regression methods based  on simulation for  linear models  with  small (2) to relatively large 
(8) predicators. The simulation results showed that the OLS estimates could not perform well 
with regard to their MSE in the existence of autocorrelation and multicollinearity. In the 
presence of multicollinearity with less or no autocorrelation, both the TR method and RR 
method are the best methods for few predictor variables. However, the TR method performance 
improves with large sample sizes. Again, the study found that the TR method is the best method 
in handling multicollinearity and autocorrelation problems in a dataset with few predictor 
variables. Furthermore, sample size has a significant impact on method performance at all 
levels of autocorrelation and multicollinearity. The MSEs of the methods decrease with 
increased sample size. Generally, TR method is most suitable for addressing multicollinearity 
and autocorrelation problems with few predictor variables. 
In existence of multicollinearity and sufficiently high degrees of autocorrelation for many 
predictor variables, the TRQR method at 0.5 quantile, is seen to be the best. However, in the 
presence of multicollinearity with less or no autocorrelation, the RQR method has minimum 
MSE values for a small sample size and the TRQR method at 0.5 quantile level has minimum 
MSE values for a large sample size. The study found that sample size and number of predictors 
in a model have significant impact on the performances of the regression methods for datasets 
which include possible multicollinearity and autocorrelation issues. Increasing the degree of 
multicollinearity between the predictor variables also has an adverse effect on the regression 
methods. Overall, the TRQR method at 0.5 quantile level is found to be suitable for addressing 
multicollinearity and autocorrelation problems with many predictor variables. 
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Table A1: Simulation Results of MSE for 2 Predictors linear model 
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ρ γ² n 
RQR LQR TRQR TLQR 

τ = 
0.25 

τ = 
0.5 

τ = 
0.75 

τ = 
0.25 

τ = 
0.5 

τ = 
0.75 

τ = 
0.25 

τ = 
0.5 

τ = 
0.75 

τ = 
0.25 

τ = 
0.5 

τ = 
0.75 

  
25 

0.780
7 

0.29
61 

0.776
7 

0.879
3 

0.43
33 

0.982
2 

0.814
8 

0.30
48 

0.755
3 

0.854
4 

0.51
77 

0.901
1 

 
0.
7 

50 
0.693

6 
0.14
05 

0.612
2 

0.661
9 

0.17
22 

0.652
0 

0.592
0 

0.13
48 

0.595
4 

0.637
7 

0.17
02 

0.635
5 

  
20
0 

0.511
3 

0.03
73 

0.503
6 

0.515
3 

0.03
99 

0.507
2 
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Table A2: Simulation Results of MSE for 8 Predictors linear model 

ρ γ² n 
RQR LQR TRQR TLQR 
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